Неживые бактерии в прививках

Неживые бактерии в прививках thumbnail

Оглавление темы “Иммунодефициты. Вакцины. Сыворотки. Иммуноглобулины.”:

1. Клеточные иммунодефициты. Т-клеточная недостаточность иммунитета. Диагностика клеточных иммунодефицитов. Синдром Ди Джорджи. Синдром Незелофа. Тяжёлый комбинированный иммунодефицит. Синдром Вискотта-Олдрича.

2. Транзиторные иммунодефициты. Механизм развития транзиторных иммунодефицитов. Иммунотерапия. Иммунопрофилактика. Иммунобиологические препараты.

3. Виды иммунобиологических препаратов. Эффекты иммунобиологических препаратов.

4. Вакцины. Виды антигенов вакцин. Классификация вакцин. Виды вакцин. Живые вакцины. Ослабленные ( аттенуированные ) вакцины. Дивергентные вакцины.

5. Инактивированные вакцины. Корпускулярные ( цельновирионные ) вакцины. Компонентные ( субъединичные ) вакцины.

6. Генно-инженерные ( рекомбинантные ) вакцины. Векторные вакцины. Синтетические вакцины.

7. Молекулярные вакцины. Анатоксины. Классификация анатоксинов. Конъюгированные вакцины.

8. Моновалентные вакцины. Ассоциированные ( поливалентные ) вакцины. Методы вакцинопрофилактики. Методы введения вакцин. Типы вакцинаций. Виды вакцинаций.

9. Эффективность вакцин. Проверка эффективности вакцин. Индекс защиты вакцины. Индекс эффективности вакцины.

10. Сывороточные иммунные препараты. Иммунные сыворотки. Гетерологичные сыворотки. Гомологичные сыворотки. Иммунные иммуноглобулины.

Инактивированные вакцины. Корпускулярные ( цельновирионные ) вакцины. Компонентные ( субъединичные ) вакцины.

В настоящее время также применяют вакцины, изготовленные из убитых микробных тел либо метаболитов, а также из отдельных Аг, полученных биосинтетическим или химическим путём. Вакцины, содержащие убитые микроорганизмы и их структурные компоненты, относят к группе корпускулярных вакцинных препаратов.

Неживые вакцины обычно проявляют меньшую (по сравнению с живыми вакцинами) иммуногенность, что диктует необходимость многократной иммунизации. В то же время неживые вакцины лишены балластных веществ, что значительно уменьшает частоту побочных эффектов, часто развивающихся после иммунизации живыми вакцинами.

Корпускулярные (цельновирионные) вакцины

Для их приготовления вирулентные микроорганизмы убивают либо термической обработкой, либо воздействием химических агентов (например, формалина или ацетона). Подобные вакцины содержат полный набор Аг. Спектр возбудителей, используемых для приготовления неживых вакцин, разнообразен; наибольшее распространение получили бактериальные (например, противочумная) и вирусные (например, антирабическая) вакцины.

Компонентные ( субъединичные ) вакцины

Компонентные (субъединичные) вакцины — разновидность корпускулярных неживых вакцин; они состоят из отдельных (главных, или мажорных) антигенных компонентов, способных обеспечить развитие невосприимчивости. В качестве Аг применяют иммуногенные компоненты возбудителя. Для их выделения используют различные физико-химические методы, поэтому препараты, получаемые из них, также известны как химические вакцины. В настоящее время разработаны субъединичные вакцины против пневмококков (на основе полисахаридов капсул), брюшного тифа (О-, Н- и Vi-Ar), сибирской язвы (полисахариды и полипептиды капсул), гриппа (вирусные нейраминидазы и гемагглютинин). Для придания более высокой иммуногенности компонентные вакцины нередко сочетают с адъювантами (например, сорбируют на гидр оксиде алюминия).

Инактивированные вакцины. Корпускулярные ( цельновирионные ) вакцины. Компонентные ( субъединичные ) вакцины

– Также рекомендуем “Генно-инженерные ( рекомбинантные ) вакцины. Векторные вакцины. Синтетические вакцины.”

Источник

Как мы уже говорили, вакцина служит для того, чтобы иммунная система ознакомилась с вражеской инфекцией и смогла быстро дать ей отпор при личной встрече.

Основными действующими компонентами современных вакцин могут быть:

1 ⏺ Ослабленный возбудитель (бактерия/вирус).

Для иммунной системы он выглядят почти точно также, как полноценный но вызвать заболевание не может, тк производитель вакцины его видоизменил (ослабил) так, что он перестал быть патогенным. Такая вакцина называется «живая». К ней относятся, например, вакцина от полиомиелита (оральная) и от туберкулеза (БЦЖ), а также краснухи, кори, свинки и ветрянки.

2 ⏺ Убитый* возбудитель.

В данном случае все тоже самое, что и в первом, только инфекционный агент уже не живой. В составе мертвые (убитые) бактерии или инактивированные вирусы. Это вакцины против коклюша (цельноклеточная), полиомиелита (ИПВ) и др.

* Напомню, что в случае, когда речь идет о вирусах, некорректно говорить о «живом» и мертвом» вирусе, тк с точки зрения науки вирусы не являются чем-то живым.

Можно говорить о вирулентных – способных заражать и вызывать полноценное заболевание, и инактивированных – не способных вызвать болезнь, но достаточных для выработки иммунного ответа. Но для удобства мы иногда будем называть их живыми/убитыми, тем более, что это выражение уже прочно вошло в обиход.

3 ⏺ Анатоксины (токсоиды)

Это особым образом обработанные (инактивированные) токсины бактерий, которые уже не являются для организма ядом, но все еще способны вызывать иммунный ответ. На их основе делают прививочный вакцины от столбняка, дифтерии, коклюша (вакцина с бесклеточным коклюшным компонентом).

Интересно, что, например, при естественном заражении столбняком иммунитет к нему не формируется, тк содержание токсина в крови не достаточно для формирования иммунной памяти, а бо́льшая концентрация приводит к летальному исходу.

В данном случае инактивированный токсин – единственная возможность получить иммунитет и не бояться данной инфекции.

4 ⏺ Искусственные антигены

Материалом для создания искусственных антигенов становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии.

В данном случае разработчик вакцины выступает инженером той конструкции, которую будут вводить пациенту.

Для создания такой вакцины необходимо пройти несколько этапов разработки

– Вначале выбирают какой-то из белков возбудителя, на который иммунная система хорошо реагирует

– В лаборатории создают специально “обученную” клеточную культуру, которая этот белок будет по заданию производить (производят генную модификацию, встраивая в геном клеток-продуцентов последовательность, кодирующую нужный белок)

– Обеспечивают эту культуру всем необходимым, чтобы видоизмененная клеточка активно размножалась и производила антигены для вакцины

– Спустя какое-то время «собирают урожай», выделяя из раствора искомый белок.

Процесс по его сути можно сравнить с обычным брожением.

В этом случае дрожжи – будут той самой специально обученной культурой клеток, а спирт – то искомое вещество, которое мы хотим от этих клеток получить. Сахар или фрукты, которые мы им предоставляем служат для дрожжей пищей. Только дрожжи от природы умеют делать спирт, а антигены для вакцины от ВГВ нет.

Особенностью таких вакцин является то, что реального возбудителя, что называется, даже рядом не лежало. Мы просто срисовали его кусочек и распечатали много раз на 3D принтере (клонировали).

Так делают современные вакцины против вирусного гепатита В (ВГВ) и вируса папилломы человека (ВПЧ).

Вакцины и собаки

Для наилучшего понимания можно провести еще одну аналогию:

  • волк (дикий) = дикий вирус
  • собака (домашняя) = ослабленный вирус
  • мертвая собака (простите) = инактивированный вирус
  • лапа от плюшевого щенка = искусственный антиген

Итого, все вакцины можно разделить на живые и неживые.

Живые – как говорили выше, содержат ослабленного возбудителя.

Неживые – содержат убитого возбудителя или же его искусственно созданные фрагменты.

В России зарегистрированы следующие варианты:

НЕЖИВЫЕ ВАКЦИНЫ от следующих инфекций

???? Вирусный Гепатит В (Регевак, Вакцина рекомбинантная дрожжевая, Комбиотех)

???? Вирусный Гепатит А (Хаврикс, Аваксим, Альгавак)

???? Полиомиелит ИПВ (Полимилекс, Полиорикс, Имовакс Полио, в составе комплексных вакцин)

???? Грипп (инфлювак, ваксигрип, ультрикс, грипполы, совигрипп).

???? Клещевой энцефалит (Клещ-Э-Вак, Энцевир, Энцевир Нео, Энцепур, ФСМЕ-иммун, вакцина от клещевого энцефалита от института Чумакова без фирменного наименования )

???? Вирус Папилломы Человека (Гардасил, Церварикс)

???? Коклюш, дифтерия, столбняк (в составе комплексных вакцин: АКДС, Бубо-Кокк, Бубо-М, Пентаксим, Тетраксим, Инфанриксы, Адасель)

???? Гемофильная инфекция тип b (Акт-хиб, Хиберикс, в составе комплексных вакцин)

???? Пневмококк (Превенар 13, Синфлорикс, Пневмо 23, Пневмовакс 23)

???? Менингококк (Менактра, Менвео, Менцевакс и другие)

и ЖИВЫЕ ВАКЦИНЫ

???? Вакцина от туберкулеза (БЦЖ, БЦЖ-М)

???? Коревая вакцина (моновакцина без фирменного наименования)

???? Краснушная вакцина (моновакцина без фирменного наименования)

???? Паротитная вакцина (моновакцина без фирменного наименования)

???? Корь+Паротит (дивакцина без фирменного наименования)

???? Вакцина от кори, краснухи, паротита (Приорикс, MMR-II)

???? Вакцина от Ветряной оспа (Варилрикс)

???? Оральная Полиомиелитная Вакцина (Бивак полио)

???? Вакцина оральная от Ротавируса (Ротатек)

(если какие-то вакцины забыла – напишите в комментариях, я дополню список)

СОЧЕТАЕМОСТЬ ВАКЦИН

Если вы сомневаетесь, можно ли делать какие-то вакцины из этих двух списков в один день – да, можно! Любые сочетания! Хоть 10.

Вот что на этот счет думает CDC:

Although there is no exact limit on the number of injections, with a little flexibility, a provider can ensure that the primary series doses are given without administering too many injections at each visit.

Не существует определенного лимита на число одновременно вводимых доз, однако следует подходить к вопросу гибко и не вводить слишком много доз за один раз

В России строгое ограничение есть только для БЦЖ, ее делают отдельно, но не из-за того, что она как-то взаимодействует с другими вакцинами, а потому, что есть риск, что по невнимательности медсестра введет ее не внутрикожно, как положено, а подкожно или внутримышечно, перепутав шприц с БЦЖ с другой вакциной. Это приведет к холодному абсцессу (осложнению). И этот риск минимизируют тем, что БЦЖ всегда делают отдельно от других вакцин (по крайней мере в России).

Также по разным причинам в инструкции к некоторым вакцинам могут быть указаны иные рекомендации. Например в инструкции к вакцине “Клещ-Э-Вак” написано, что она разрешена к введению с другими инактивированными вакцинами:

Допускается проводить вакцинацию против клещевого энцефалита одновременно (в один день) с другими инактивированными вакцинами Национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям (за исключением антирабических).

В то время как аналогичная по составу вакцина “Энцепур” разрешается к введению с любыми вакцинами:

“Вакцину Энцепур можно вводить одновременно со всеми препаратами из национального календаря профилактических прививок в один день, в разные участки тела.

Применение вакцины Энцепур совместно с другими прививками не влияет на их иммуногенность (способность выработки иммунитета).

Переносимость вакцин не ухудшается, количество побочных реакций не возрастает”.

Почти всегда такой запрет связан с тем, что просто не проводили исследований совместного применения вакцин в той конкретной стране, где в инструкции есть такое указание.

Плохая новость в том, что если медик, который проводит вакцинацию, внимательно читает инструкцию, то для него это основание вам отказать в одномоментном введении вакцин. Так что если вы планируете сделать прививки от всего и сразу, то лучше заранее изучите инструкции на предмет такой неприятности.

Менактра и превенар

У людей с ВИЧ и аспленией CDC и IAC не рекомендуют делать в один день Менактру и Превенар13, так как это приводит к снижению иммунного ответа на некоторые антигены пневмококковой вакцины.

Для здоровых людей единого мнения на этот счёт нет, но по возможности желательно разносить эти вакцины на разные приемы.

ИНТЕРВАЛЫ МЕЖДУ ПРИВИВКАМИ

Если НЕ СДЕЛАЛИ В ОДИН ДЕНЬ, то:

Обе вакцины НЕживые = любой интервал

Одна вакцина живая, вторая нет = любой интервал

Обе вакцины живые = Ждать месяц

Исключение:

Если прививаемому показана и 13-валентная и 23-валентная вакцины от пневмококковой инфекции, то они не должны вводиться одновременно, и 13-валентная вакцина должна вводиться первой.

In patients recommended to receive both PCV13 and PPSV23, the 2 vaccines should not be administered simultaneously. PCV13 should be administered first.

Если 23-валентная вакцина была введена первой, то 13-валентная не должна вводиться ранее, чем через 8 недель у лиц в возрасте 6-18 лет, и не ранее, чем через год у лиц 19 лет и старше .

If PPSV23 has been administered first, PCV13 should be administered no earlier than 8 weeks later in children 6-18 years, and one year later in adults 19 years and older.

Однако, с учетом действующего законодательства в России, месяц придется ждать между любыми вакцинами, если они не были сделаны в один день.

Подробнее об интервалах между прививками мы поговорим в следующей статье.

Частый вопрос – заразен ли привитый для окружающих подробно разобран в ранее опубликованной статье.

Не забудьте нажать “палец вверх”, если статья была вам полезна.

Поделитесь ей с друзьями!

Если у вас есть вопросы, то вы можете задать их в комментариях.

Ваша Нина

Источник

Сегодня перед каждым родителем встает важнейший вопрос вакцинирования ребенка. Да и самим взрослым периодически необходимо ставить прививки. Многие сторонники «естественной медицины» уверяют, что вакцинация — это опасное и вредное мероприятие, которое служит ослаблению иммунитета и направлено на финансирование медицинских экспериментов. Но давайте отложим все «теории заговора» и подойдем к вопросу о вакцинировании честно и беспристрастно.

Цель вакцинации

Прежде чем рассуждать о типах вакцин, следует  разобраться в том, что такое вакцина вообще.

Вакцина — это вещество, которое позволяет организму приобрести временную или постоянную невосприимчивость к тому или иному виду вирусов. Механизм работы вакцины довольно прост и понятен — вещество, содержащее в себе мизерную долю микроорганизмов или продуктов их жизнедеятельности, вводится в организм человека. Организм «знакомится» с таким веществом и при встрече с настоящим вирусом проявляет стойкий иммунитет.

Вакцинация помогает защититься от тяжелых вирусных заболеваний: туберкулеза, оспы, полиомиелита, паротита. Организм вырабатывает иммунитет к этим заболеваниям и становится устойчив к вирусам.

Опасности вакцинации

Следует сказать пару слов об опасностях вакцинирования. Действительно, некоторые люди, особенно дети, могут проявить аллергические реакции после введения вакцины. Обычно они выражаются в раздражении кожи, зуде, покраснении. Однако следует отметить, что:

  • крайне малый процент детей (менее 1%) проявляет аллергию;
  • состав вакцин каждый год улучшается и становится все более гипоаллергенным (то есть безопасным для людей с аллергией);
  • ваш ведущий педиатр знает обо всех аллергенах вашего ребенка и может предположить, на какие вакцины может быть аллергия;
  • аллергическая реакция на вакцину — ничто по сравнению с настоящим заболеванием.

Состав вакцины

Для выработки иммунитета ученые используют следующие типы раздражителей:

  • живые микроорганизмы;
  • ослабленные или убитые микроорганизмы;
  • химически синтезированные антигены;
  • продукты жизнедеятельности микроорганизмов.

Живые и неживые вакцины

Живыми называют вакцины, в составе которых есть настоящие естественные микроорганизмы. Неживыми — все остальные. Многие родители предполагают, что живые вакцины более эффективны и безопасны для ребенка, однако на самом деле это правда лишь отчасти. Давайте рассмотрим различия между живыми и неживыми вакцинами.

  1. Безопасность для организма. И живые, и неживые вакцины безвредны и безопасны в одинаковой степени. Нет никаких статистических или научных данных о том, что один вид вакцин чаще вызывает аллергическую реакцию. Не следует бояться синтезированных антигенов. Однако живые вакцины не вводят людям с заболеваниями, вызывающими проблемы с иммунитетом. Это лейкемия, ВИЧ, а также болезни, которые лечатся препаратами с подавлением иммунной системы. Это связано с тем, что живой штамм при сниженном иммунитете носителя может начать размножаться и привести к настоящему заболеванию.
  2. Эффективность. Живые вакцины позволяют добиться долгосрочного (зачастую даже пожизненного) иммунитета к заболеванию, в то время как неживые необходимо обновлять раз в несколько лет. Однако неживые вакцины способны добиться появления стойкого иммунитета независимо от наличия и количества циркулирующих антител в крови пациента.
  3. Скорость воздействия. После введения живой вакцины результат проявляется практически мгновенно. Неживая вакцина требует нескольких (обычно двух-трех) вакцинаций, чтобы подействовать на организм.

Источник

Сдам Сам

К таким вакцинам относятся корпускулярные бактериальные и вирусные вакцины, корпускулярные субклеточные и субъединичные вакцины, а также молекулярные вакцины. Корпускулярные вакцины представляют собой инактивированные физическими (температура, УФ-лучи, ионизирующее излучение) или химическими (формалин, фенол, р-пропиолактон) способами культуры патогенных или вакцинных штаммов бактерий и вирусов. Инактивацию проводят в оптимальном режиме (инактивирующая доза, температура, концентрация микроорганизмов), чтобы сохранить антигенные свойства микроорганизмов, но лишить их жизнеспособности. Корпускулярные вакцины, полученные из цельных бактерий, называют цельноклеточными, а из неразрушенных вирионов – цельновирионными. Инактивированные вакцины готовят в асептических условиях на основе чистых культур микроорганизмов. К готовым, дозированным (по концентрации микроорганизмов) вакцинам добавляют консервант. Вакцины могут быть в жидком (суспензии) или сухом виде. Вакцинацию выполняют 2-3 раза, вводя препарат подкожно, внутримышечно, аэрозольно, иногда перорально. Корпускулярные вакцины применяют для профилактики коклюша, гриппа, гепатита А, герпеса, клещевого энцефалита.

К корпускулярным вакцинам относят также субклеточные и субвирионные вакцины, в которых в качестве действующего начала используют антигенные комплексы, выделенные из бактерий или вирусов после их разрушения. Приготовление субклеточных и субвирионных вакцин сложнее, чем цельноклеточных и цельновирионных, однако такие вакцины содержат меньше балластных компонентов микроорганизмов.

Раньше субклеточные и субвирионные вакцины называли химическими, поскольку применяли химические методы при выделении антигенов, из которых готовили вакцину. Однако этот термин более применим к вакцинам, полученным методом химического синтеза.В настоящее время используют субклеточные инактивирован-ные вакцины против брюшного тифа (на основе О-, Н- и Vi-антигенов), дизентерии, гриппа (на основе нейраминидазы и гемагглютинина), сибирской язвы (на основе капсульного антигена) и др. Такие вакцины, как правило, применяют с добавлением адъювантов. Молекулярные вакцины. К ним относят специфические антигены в молекулярной форме, полученные методами биологического, химического синтеза, генетической инженерии. Принцип метода биосинтеза состоит в выделении из микроорганизмов или культуральной жидкости протективного антигена в молекулярной форме. Например, истинные токсины (дифтерийный, столбнячный, ботулиновый) выделяются клетками при их росте. Молекулы токсина при обезвреживании формалином превращаются в молекулы анатоксинов, сохраняющие специфические антигенные свойства, но теряющие токсичность. Следовательно, анатоксины являются типичными представителями молекулярных вакцин. Анатоксины (столбнячный, дифтерийный, ботулиновый, стафилококковый, против газовой гангрены) получают путем выращивания глубинным способом в ферментаторах возбудителей столбняка, дифтерии, ботулизма и других микроорганизмов, в результате чего в культуральной жидкости накапливаются токсины. После отделения микробных клеток сепарированием культуральную жидкость (токсин) обезвреживают формалином в концентрации 0,3.0,4 % при 37ºС в течение 3.4 нед. Обезвреженный токсин – анатоксин, потерявший токсичность, но сохранивший антигенность, подвергают очистке и концентрированию, стандартизации и фасовке. К очищенным анатоксинам добавляют консервант и адъювант. Такие анатоксины называют очищенными сорбированными. Дозируют анатоксин в антигенных единицах (ЕС – единица связывания, ЛФ – флокку-ляционная единица). Применяют анатоксины подкожно, внутримышечно; схема иммунизации состоит из 2-3 прививок с последующими ревакцинациями. Выделение протективных антигенов в молекулярной форме из самих микроорганизмов – задача довольно сложная, поэтому приготовление молекулярных вакцин этим способом не вышло за рамки эксперимента. Более продуктивным оказался метод генетической инженерии, с помощью которого получены рекомбинантные штаммы, продуцирующие антигены бактерий и вирусов в молекулярной форме. На основе таких антигенов можно создавать вакцины. Так, уже разработана и выпускается промышленностью молекулярная вакцина, содержащая антигены вируса гепатита В, продуцируемые рекомбинантными клетками дрожжей. Создана молекулярная вакцина против ВИЧ из антигенов вируса, продуцируемых рекомбинантными штаммами Е. coli.

Химический синтез молекулярных антигенов пока широко не применяется из-за своей сложности. Однако уже получены методом химического синтеза некоторые низкомолекулярные антигены [Петров Р.В., Иванов В.Т. и соавт. и др.]. Это направление, безусловно, будет развиваться.

Синтетические и полусинтетические вакцины

С целью повышения эффективности вакцин и снижения побочного действия за счет балластных веществ в настоящее время решается проблема конструирования искусственных вакцин. Основными компонентами таких вакцин являются антиген или его детерминанта в молекулярном виде, полимерный высокомолекулярный носитель для придания макромолекулярности антигену и адъювант, неспецифически повышающий активность антигена. В качестве носителя используют полиэлектролиты (винилпир-ролидон, декстран), с которыми сшивается антиген.

Ассоциированные вакцины

Для одновременной иммунизации против ряда инфекций применяют поливалентные, или ассоциированные, вакцины. Они могут включать как однородные антигены (например, анатоксины), так и антигены различной природы (корпускулярные и молекулярные, живые и убитые).

Примером ассоциированной вакцины первого типа может служить секстаанатоксин против столбняка, газовой гангрены и ботулизма, второго типа – АКДС-вакцина, в которую входят столбнячный, дифтерийный анатоксины и коклюшная корпускулярная вакцина. В живую поливалентную ассоциированную полиоми-елитную вакцину входят живые вакцинные штаммы вируса полиомиелита I, II, III типов. В ассоциированные вакцины включаются антигены в дозировках, не создающих взаимной конкуренции, чтобы иммунитет формировался ко всем входящим в вакцину антигенам.

Массовые способы вакцинации

Вакцины вводят накожным, чрескожным (подкожно и внутримышечно), интраназальным (через нос), пероральным (через рот), ингаляционным (через легкие) путями. Способ введения вакцины обусловлен характером препарата и вакцинального процесса. Накожный, интраназальный, пероральный способы более надежны для живых вакцин. Сорбированные вакцины можно вводить только чрескожными методами. Однако любой метод должен обеспечивать реализацию иммуногенных свойств вакцины и не вызывать чрезмерных поствакцинальных реакций. Большое значение имеют производительность и экономичность способа введения препарата. Это приобретает особую важность в случае необходимости быстрого охвата прививками больших масс людей в короткое время, например в период эпидемий. Применение скарификационного или шприцевого способа введения в этих ситуациях требует длительного времени и огромного числа медицинского персонала. Поэтому разработаны массовые способы иммунизации, к которым относят безыгольную инъекцию, пероральный и аэрозольный (ингаляционный) способы. Эти способы позволяют бРНГАде из 1-2 человек привить около 1000 и более человек в час. Для безыгольной инъекции применяют автоматы пистолетного типа, в которых струя жидкости (вакцины) под большим давлением проникает через кожу на заданную глубину (внут-рикожно, подкожно, внутримышечно). Для пероральной и ингаляционной иммунизации используют специально сконструированные вакцины (таблетки, конфеты-драже, жидкие и сухие препараты). Пероральные вакцины наиболее удовлетворяют требованиям, предъявляемым к массовым методам вакцинации, они менее ре-актогенны и исключают передачу «шприцевых» инфекций – ВИЧ (СПИД), вирусных гепатитов В и С, сифилиса, малярии. Широко применяют пероральную полиомиелитную вакцину; разработаны также пероральные таблетированные живые вакцины против чумы, оспы и других инфекций (А. А. Воробьев и др.).

Эффективность вакцин

Иммунизирующую способность вакцин проверяют в эксперименте на животных и эпидемическом опыте. В первом случае ее выражают коэффициентом защиты (КЗ), во втором – индексом эффективности (ИЭ). Как КЗ, так и ИЭ представляют собой отношение числа заболевших или погибших среди невакцинированных особей к числу заболевших или погибших среди вакцинированных особей при их инфицировании. Например, среди 1000 вакцинированных заболело 10 человек, а среди 1000 невакцинированных – 100 человек.

Эффективность иммунизации зависит не только от природы и качества препарата, но и от схемы его применения (величина дозы, кратность применения, интервалы времени между прививками), а также состояния реактивности прививаемых (состояние здоровья, питание, витаминная обеспеченность, климатические условия и др.).

Система вакцинации для профилактики инфекционных болезней среди населения страны регламентируется календарем прививок, в котором, начиная с рождения и до старости, определено проведение обязательных прививок и прививок по показаниям. В каждой стране существует такой календарь прививок. Поствакцинальные (нежелательные, побочные) реакции, как местные, так и общие, на введение вакцин выражаются степенью интенсивности (диаметр отека, гиперемии на месте инъекции, высота температуры). Перед выпуском каждой вакцины контролируют ее безвредность, иммуногенность и другие свойства на производстве и в контрольных лабораториях, а выборочно – в Институте стандартизации и контроля медицинских биологических препаратов им. Л.А. Тарасевича.

Эубиотики

В результате нарушений нормального биоценоза микрофлоры кишечника возникают дисбактериозы, которые лежат в основе многих болезней или сопровождают болезни (см. главу 4). Для лечения дисбактериозов применяют препараты, приготовленные из микроорганизмов, которые являются представителями нормальной микрофлоры кишечника человека. Эти препараты, предназначенные для нормализации кишечной флоры, называют эубиотиками. Наиболее часто применяют следующие эубиотики: бифидумбактерин, колибактерин, лактобактерин, субтилин, бификол. Препараты представляют собой живые высушенные культуры соответствующих микроорганизмов, обычно в таблетированной форме, с указанием числа микробных клеток в препарате. Разработаны также эубиотики в виде кисломолочных продуктов (кефир «Бифидо», «Биокефир» и др.). Учитывая, что эубиотики содержат живые микроорганизмы, они должны храниться в щадящих условиях. Назначают эубиотики перорально по 2-3 раза в день длительными курсами от 1 до 6 мес, как правило, в комбинации с другими методами лечения.

Фаги

Фаги – иммунобиологические препараты, созданные на основе вирусов бактерий. Используются для диагностики, профилактики и лечения бактериальных инфекций. Фагодиагностика применяется для идентификации и индикации бактерий, фагопрофилактика – для предупреждения эпидемических болезней (брюшной тиф, дизентерия, холера и др.), фаготерапия – для лечения инфекционных болезней, вызванных бактериями (кишечные, раневые и другие инфекции). Механизм действия фагов – лизис клеток бактерий.Фаги получают культивированием пораженных фагом бактерий и выделением из культуральной жидкости фильтрата, содержащего фаги, с последующим его высушиванием и таблетированием. Титрование фагов производят на соответствующих чувствительных к нему культурах бактерий, выращенных на плотных или жидких питательных средах. Активность фага выражают числом частиц фага, содержащихся в I мл или 1 таблетке. С профилактической и лечебной целью фаги назначают перорально или местно (орошение раневой поверхности) длительными курсами. Эффект фагопрофилактики и лечения умеренный.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

©2015- 2020 zdamsam.ru Размещенные материалы защищены законодательством РФ.

Источник

Читайте также:  Прививки по возрасту таблица