Что такое прививки и какие они бывают

Что такое прививки и какие они бывают thumbnail

Открытие метода вакцинации дало старт новой эре борьбы с болезнями.

В состав прививочного материала входят убитые или сильно ослабленные микроорганизмы либо их компоненты (части). Они служат своеобразным муляжом, обучающим иммунную систему давать правильный ответ инфекционным атакам. Вещества, входящие в состав вакцины (прививки), не способны вызвать полноценное заболевание, но могут дать возможность иммунитету запомнить характерные признаки микробов и при встрече с настоящим возбудителем быстро его определить и уничтожить.

Производство вакцин получило массовые масштабы в начале ХХ века, после того как фармацевты научились обезвреживать токсины бактерий. Процесс ослабления потенциальных возбудителей инфекций получил название аттенуации.

Сегодня медицина располагает более, чем 100 видами вакцин от десятков инфекций.

Препараты для иммунизации по основным характеристикам делятся на три основных класса.

  1. Живые вакцины. Защищают от полиомиелита, кори, краснухи, гриппа, эпидемического паротита, ветряной оспы, туберкулеза, ротавирусной инфекции. Основу препарата составляют ослабленные микроорганизмы — возбудители болезней. Их сил недостаточно для развития значительного недомогания у пациента, но хватает, чтобы выработать адекватный иммунный ответ.
  2. Инактивированные вакцины. Прививки против гриппа, брюшного тифа, клещевого энцефалита, бешенства, гепатита А, менингококковой инфекции и др. В составе мертвые (убитые) бактерии или их фрагменты.
  3. Анатоксины (токсоиды). Особым образом обработанные токсины бактерий. На их основе делают прививочный материал от коклюша, столбняка, дифтерии.

В последние годы появился еще один вид вакцин — молекулярные. Материалом для них становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии (рекомбининтная вакцина против вирусного гепатита В).

Схемы изготовления некоторых видов вакцин

Живые бактериальные

Блок-схема производства живых бактериальных вакцин

Схема подходит для вакцины БЦЖ, БЦЖ-М.

Живые противовирусные

Блок-схема производства живых противовирусных вакцин

Схема подходит для производства вакцин от гриппа, ротавируса, герпеса I и II степеней, краснухи, ветряной оспы.

Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться:

  • куриные эмбрионы;
  • перепелиные эмбриональные фибробласты;
  • первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков);
  • перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293).

Первичный сырьевой материал очищают от клеточного дебриса в центрифугах и с помощью сложных фильтров.

Инактивированные антибактериальные вакцины

Блок-схема производства бактериальных инактивированных вакцин

  • Культивация и очистка штаммов бактерий.
  • Инактивация биомассы.
  • Для расщепленных вакцин клетки микробов дезинтегрируют и осаждают антигены с последующим их хроматографическим выделением.
  • Для конъюгированных вакцин полученные при предыдущей обработке антигены (как правило, полисахаридные) сближают с белком-носителем (конъюгация).

Инактивированные противовирусные вакцины

Блок-схема производства инактивированных противовирусных вакцин

  • Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться куриные эмбрионы, перепелиные эмбриональные фибробласты, первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков), перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293). Первичная очистка для удаления клеточного дебриса проводится методами ультрацентрифугирования и диафильтрации.
  • Для инактивации используются ультрафиолет, формалин, бета-пропиолактон.
  • В случае приготовления расщепленных или субъединичных вакцин полупродукт подвергают действию детергента с целью разрушить вирусные частицы, а затем выделяют специфические антигены тонкой хроматографией.
  • Человеческий сывороточный альбумин применяется для стабилизации полученного вещества.
  • Криопротекторы (в лиофилизатах): сахароза, поливинилпирролидон, желатин.

Схема подходит для производства прививочного материала против гепатита А, желтой лихорадки, бешенства, гриппа, полиомиелита, клещевого и японского энцефалитов.

Анатоксины

Блок-схема производства анатоксинов

Для дезактивации вредного воздействия токсинов используют методы:

  • химический (обработка спиртом, ацетоном или формальдегидом);
  • физический (подогрев).

Схема подходит для производства вакцин против столбняка и дифтерии.

По данным Всемирной Организации Здравоохранения (ВОЗ), на долю инфекционных заболеваний приходится 25 % от общего количества смертей на планете ежегодно. То есть инфекции до сих пор остаются в списке главных причин, обрывающих жизнь человека.

Одним из факторов, способствующих распространению инфекционных и вирусных заболеваний, являются миграция потоков населения и туризм. Перемещение человеческих масс по планете влияет на уровень здоровья нации даже в таких высокоразвитых странах, как США, ОАЭ и государства Евросоюза.

По материалам: «Наука и жизнь» № 3, 2006, «Вакцины: от Дженнера и Пастера до наших дней», академик РАМН В. В. Зверев, директор НИИ вакцин и сывороток им. И. И. Мечникова РАМН.

Источник

Знаете ли вы, что такое прививка?

Вакцинация (прививка) – это введение в организм человека медицинских иммунобиологических препаратов для создания специфической невосприимчивости к инфекционным болезням.

Предлагаем разобрать каждую часть этого определения, чтобы понять, что же такое вакцина и как она работает.

Часть 1. Медицинский иммунобиологический препарат

Все вакцины — это медицинские иммунобиологические препараты, т.к. они вводятся под контролем врача и содержат обработанные по специальной технологии возбудители заболеваний (биологические), против которых планируется создать иммунитет (иммуно-).

Кроме возбудителей или их частей-антигенов, вакцины иногда содержат специальные разрешенные консерванты для сохранения стерильности вакцины при хранении, а также минимальное допустимое количество тех средств, которые использовались для выращивания и инактивации микроорганизмов.

Например, следовые количества дрожжевых клеток, используемых в производстве вакцин против гепатита В, или следовые количества белка куриных яиц, которые в основном используются для производства вакцин против гриппа.

Стерильность препаратов обеспечивают консерванты, рекомендованные Всемирной организацией здравоохранения и международными организациями по контролю безопасности лекарственных средств. Эти вещества разрешены для введения в организм человека.

Полный состав вакцин указан в инструкциях по их применению. Если у человека имеется установленная тяжелая аллергическая реакция на какой-то из компонентов конкретной вакцины, то обычно это является противопоказанием к её введению.

Часть 2. Пути введения

Для введения вакцины в организм используются разные методы, их выбор определяется механизмом формирования защитного иммунитета, а способ введения указан в инструкции по применению. Рассмотрим каждый отдельно.

Внутримышечный путь введения вакцин

Наиболее часто встречающийся путь для введения вакцин. Хорошее кровоснабжение мышц гарантирует и максимальную скорость выработки иммунитета, и максимальную его интенсивность, поскольку большее число иммунных клеток имеет возможность «познакомиться» с вакцинными антигенами.

Читайте также:  Какие и когда нужно делать прививки китайской хохлатой

Удаленность мышц от кожного покрова обеспечивает меньшее число побочных реакций, которые в случае внутримышечного введения обычно сводятся лишь к некоторому дискомфорту при активных движениях в мышцах в течение 1-2 дней после вакцинации.

Место введения

Вводить вакцины в ягодичную область не рекомендуется. Во-первых, иглы шприц-доз многих вакцин недостаточно длинны для того, чтобы достичь ягодичной мышцы, в то время, как известно, и у детей, и у взрослых кожно-жировой слой может иметь значительную толщину. Если вакцина вводится в ягодичную область, то она, возможно, будет введена подкожно.

Следует также помнить о том, что любая инъекция в ягодичную область сопровождается определенным риском повреждения седалищного нерва у людей с нетипичным его прохождением в мышцах.

Предпочтительным местом введения вакцин у детей первых лет является передне-боковая поверхность бедра в средней его трети. Это объясняется тем, что мышечная масса в этом месте значительна, при том, что подкожно-жировой слой развит слабее, чем в ягодичной области (особенно у детей, которые еще не ходят).

У детей старше двух лет и взрослых предпочтительным местом введения вакцин является дельтовидная мышца (мышечное утолщение в верхней части плеча, над головкой плечевой кости), в связи с небольшой толщиной кожного покрова и достаточной мышечной массой для введения 0,5-1,0 мл вакцинного препарата. У детей первого года жизни это место обычно не используется в связи с недостаточным развитием мышечной массы.

Техника вакцинации

Обычно внутримышечная инъекция проводится перпендикулярно, то есть под углом 90 градусов к поверхности кожи.

Преимущества

хорошее всасывание вакцины и, как следствие, высокая иммуногенность и скорость выработки иммунитета. Меньшее число местных побочных реакций.

Недостатки

Субъективное восприятие детьми младшего возраста внутримышечных инъекций несколько хуже, чем при других способах вакцинации.

Пероральный (через рот)

Классическим примером пероральной вакцины является ОПВ – живая полиомиелитная вакцина. Обычно таким образом вводятся живые вакцины, защищающие от кишечных инфекций (полиомиелит, брюшной тиф).

Техника пероральной вакцинации

несколько капель вакцины закапываются в рот. Если вакцина имеет неприятный вкус, ее могут закапывать либо на кусочек сахара, либо печенья.

Преимущества

Преимущества такого пути введения вакцины очевидны: нет укола, простота метода, его быстрота.

Недостатками

Недостатками перорального введения вакцин можно считать разлив вакцины, неточность дозировки вакцины (часть препарата может выводиться с калом, не сработав).

Внутрикожный и накожный

Классическим примером вакцины, предназначенной для внутрикожного введения, является БЦЖ. Примерами вакцин с внутрикожным введением также являются живая туляремийная вакцина и вакцина против натуральной оспы.

Как правило, внутрикожно вводятся живые бактериальные вакцины, распространение микробов из которых по всему организму крайне нежелательно.

Техника

Традиционным местом для накожного введения вакцин является либо плечо (над дельтовидной мышцей), либо предплечье – середина между запястьем и локтевым сгибом.

Для внутрикожного введения должны использоваться специальные шприцы со специальными, тонкими иглами. Иголочку вводят вверх срезом, практически параллельно поверхности кожи, оттягивая кожу вверх. При этом необходимо убедиться, что игла не проникла под кожу.

О правильности введения будет свидетельствовать образование специфической «лимонной корочки» в месте введения – белесый оттенок кожи с характерными углублениями на месте выхода протоков кожных желез. Если «лимонная корочка» не образуется во время введения, значит вакцина вводится неверно.

Преимущества

Низкая антигенная нагрузка, относительная безболезненность.

Недостатки

Довольно сложная техника вакцинации, требующая специальной подготовки. Возможность неправильно ввести вакцину, что может привести к поствакцинальным осложнениям.

Подкожный путь введения вакцин

Довольно традиционный путь введения вакцин и других иммунобиологических препаратов на территории бывшего СССР, хорошо известный всем уколами «под лопатку». В целом этот путь подходит для живых и инактивированных вакцин, хотя предпочтительно использовать его именно для живых (корь-паротит-краснуха, желтая лихорадка и др.).

В связи с тем, что при подкожном введении может несколько снижаться иммуногенность и скорость выработки иммунного ответа, этот путь введения крайне нежелателен для введения вакцин против бешенства и вирусного гепатита В.

Подкожный путь введения вакцин желателен для пациентов с нарушениями свертывания крови – риск кровотечений у таких пациентов после подкожной инъекции значительно ниже, чем при внутримышечном введении.

Техника

Местом вакцинации могут быть как плечо (боковая поверхность середины между плечевым и локтевым суставами), так и передне-боковая поверхность средней трети бедра. Указательным и большим пальцами кожа берется в складку и, под небольшим углом, игла вводится под кожу.

Если подкожный слой у пациента выражен значительно, формирование складки не критично.

Преимущества

Сравнительная простота техники, незначительно меньшая болезненность (что несущественно у детей) по сравнению с внутримышечной инъекцией. В отличие от внутрикожного введения, можно ввести больший объем вакцины или другого иммунобиологического препарата. Точность введенной дозы (по сравнению с внутрикожным и пероральным способом введения).

Недостатки

«Депонирование» вакцины и как следствие — меньшая скорость выработки иммунитета и его интенсивность при введении инактивированных вакцин. Большее число местных реакций — покраснений и уплотнений в месте введения.

Аэрозольный, интраназальный (через нос)

Считается, что подобный путь введения вакцин улучшает иммунитет во входных воротах воздушно-капельных инфекций (например, при гриппе) за счет создания иммунологического барьера на слизистых оболочках.

В то же время, созданный таким образом иммунитет не является стойким, и в то же время общий (т.н. системный) иммунитет может оказаться недостаточным для борьбы с бактериями и вирусами, уже проникшими в организм через барьер на слизистых оболочках.

Читайте также:  Какие прививки делают в четыре месяца ребенку

Техника аэрозольной вакцинации

несколько капель вакцины закапывают в нос либо распыляют в носовых ходах с помощью специального устройства.

Преимущества

Преимущества такого пути введения вакцины очевидны: как и для пероральной вакцинации, для аэрозольного введения не требуется укола; такая вакцинация создает отличный иммунитет на слизистых оболочках верхних дыхательных путей.

Недостатки

Недостатками интраназального введения вакцин можно считать существенный разлив вакцины, потери вакцины (часть препарата попадает в желудок).

Часть 3. Специфическая невосприимчивость

Вакцины защищают только от тех заболеваний, против которых они предназначены, в этом заключается специфика иммунитета. Возбудителей же инфекционных заболеваний множество: они делятся на различные типы и подтипы, для защиты от многих из них уже созданы или создаются специфичные вакцины с разными возможными спектрами защиты.

Так, например, современные вакцины против пневмококка (одного из возбудителей менингита и пневмонии) могут содержать по 10, 13 или 23 штамма. И хотя ученым известно около 100 подтипов пневмококка, вакцины включают самые часто встречающиеся у детей и взрослых, например, самый широкий на сегодня спектр защиты — из 23 серотипов.

Однако нужно иметь в виду, что привитой человек имеет вероятность встретиться с каким-то редким подтипом микроорганизма, который не входит в вакцину и может вызвать заболевание, так как вакцина не формирует защиту против этого редко встречающегося микроорганизма, не входящего в её состав.

Означает ли это, что прививка не нужна, раз не может защитить от всех болезней? Нет! Вакцина дает хорошую защиту от наиболее распространенных и опасных из них.

Календарь прививок, подскажет вам, против каких инфекций необходима вакцинация.

Источник: https://www.privivka.ru/o-privivke/chto-takoe-vakcina/

Источник

Как мы уже говорили, вакцина служит для того, чтобы иммунная система ознакомилась с вражеской инфекцией и смогла быстро дать ей отпор при личной встрече.

Основными действующими компонентами современных вакцин могут быть:

1 ⏺ Ослабленный возбудитель (бактерия/вирус).

Для иммунной системы он выглядят почти точно также, как полноценный но вызвать заболевание не может, тк производитель вакцины его видоизменил (ослабил) так, что он перестал быть патогенным. Такая вакцина называется «живая». К ней относятся, например, вакцина от полиомиелита (оральная) и от туберкулеза (БЦЖ), а также краснухи, кори, свинки и ветрянки.

2 ⏺ Убитый* возбудитель.

В данном случае все тоже самое, что и в первом, только инфекционный агент уже не живой. В составе мертвые (убитые) бактерии или инактивированные вирусы. Это вакцины против коклюша (цельноклеточная), полиомиелита (ИПВ) и др.

* Напомню, что в случае, когда речь идет о вирусах, некорректно говорить о «живом» и мертвом» вирусе, тк с точки зрения науки вирусы не являются чем-то живым.

Можно говорить о вирулентных – способных заражать и вызывать полноценное заболевание, и инактивированных – не способных вызвать болезнь, но достаточных для выработки иммунного ответа. Но для удобства мы иногда будем называть их живыми/убитыми, тем более, что это выражение уже прочно вошло в обиход.

3 ⏺ Анатоксины (токсоиды)

Это особым образом обработанные (инактивированные) токсины бактерий, которые уже не являются для организма ядом, но все еще способны вызывать иммунный ответ. На их основе делают прививочный вакцины от столбняка, дифтерии, коклюша (вакцина с бесклеточным коклюшным компонентом).

Интересно, что, например, при естественном заражении столбняком иммунитет к нему не формируется, тк содержание токсина в крови не достаточно для формирования иммунной памяти, а бо́льшая концентрация приводит к летальному исходу.

В данном случае инактивированный токсин – единственная возможность получить иммунитет и не бояться данной инфекции.

4 ⏺ Искусственные антигены

Материалом для создания искусственных антигенов становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии.

В данном случае разработчик вакцины выступает инженером той конструкции, которую будут вводить пациенту.

Для создания такой вакцины необходимо пройти несколько этапов разработки

– Вначале выбирают какой-то из белков возбудителя, на который иммунная система хорошо реагирует

– В лаборатории создают специально “обученную” клеточную культуру, которая этот белок будет по заданию производить (производят генную модификацию, встраивая в геном клеток-продуцентов последовательность, кодирующую нужный белок)

– Обеспечивают эту культуру всем необходимым, чтобы видоизмененная клеточка активно размножалась и производила антигены для вакцины

– Спустя какое-то время «собирают урожай», выделяя из раствора искомый белок.

Процесс по его сути можно сравнить с обычным брожением.

В этом случае дрожжи – будут той самой специально обученной культурой клеток, а спирт – то искомое вещество, которое мы хотим от этих клеток получить. Сахар или фрукты, которые мы им предоставляем служат для дрожжей пищей. Только дрожжи от природы умеют делать спирт, а антигены для вакцины от ВГВ нет.

Особенностью таких вакцин является то, что реального возбудителя, что называется, даже рядом не лежало. Мы просто срисовали его кусочек и распечатали много раз на 3D принтере (клонировали).

Так делают современные вакцины против вирусного гепатита В (ВГВ) и вируса папилломы человека (ВПЧ).

Вакцины и собаки

Для наилучшего понимания можно провести еще одну аналогию:

  • волк (дикий) = дикий вирус
  • собака (домашняя) = ослабленный вирус
  • мертвая собака (простите) = инактивированный вирус
  • лапа от плюшевого щенка = искусственный антиген

Итого, все вакцины можно разделить на живые и неживые.

Живые – как говорили выше, содержат ослабленного возбудителя.

Неживые – содержат убитого возбудителя или же его искусственно созданные фрагменты.

Читайте также:  На какой руке прививка бцж

В России зарегистрированы следующие варианты:

НЕЖИВЫЕ ВАКЦИНЫ от следующих инфекций

???? Вирусный Гепатит В (Регевак, Вакцина рекомбинантная дрожжевая, Комбиотех)

???? Вирусный Гепатит А (Хаврикс, Аваксим, Альгавак)

???? Полиомиелит ИПВ (Полимилекс, Полиорикс, Имовакс Полио, в составе комплексных вакцин)

???? Грипп (инфлювак, ваксигрип, ультрикс, грипполы, совигрипп).

???? Клещевой энцефалит (Клещ-Э-Вак, Энцевир, Энцевир Нео, Энцепур, ФСМЕ-иммун, вакцина от клещевого энцефалита от института Чумакова без фирменного наименования )

???? Вирус Папилломы Человека (Гардасил, Церварикс)

???? Коклюш, дифтерия, столбняк (в составе комплексных вакцин: АКДС, Бубо-Кокк, Бубо-М, Пентаксим, Тетраксим, Инфанриксы, Адасель)

???? Гемофильная инфекция тип b (Акт-хиб, Хиберикс, в составе комплексных вакцин)

???? Пневмококк (Превенар 13, Синфлорикс, Пневмо 23, Пневмовакс 23)

???? Менингококк (Менактра, Менвео, Менцевакс и другие)

и ЖИВЫЕ ВАКЦИНЫ

???? Вакцина от туберкулеза (БЦЖ, БЦЖ-М)

???? Коревая вакцина (моновакцина без фирменного наименования)

???? Краснушная вакцина (моновакцина без фирменного наименования)

???? Паротитная вакцина (моновакцина без фирменного наименования)

???? Корь+Паротит (дивакцина без фирменного наименования)

???? Вакцина от кори, краснухи, паротита (Приорикс, MMR-II)

???? Вакцина от Ветряной оспа (Варилрикс)

???? Оральная Полиомиелитная Вакцина (Бивак полио)

???? Вакцина оральная от Ротавируса (Ротатек)

(если какие-то вакцины забыла – напишите в комментариях, я дополню список)

СОЧЕТАЕМОСТЬ ВАКЦИН

Если вы сомневаетесь, можно ли делать какие-то вакцины из этих двух списков в один день – да, можно! Любые сочетания! Хоть 10.

Вот что на этот счет думает CDC:

Although there is no exact limit on the number of injections, with a little flexibility, a provider can ensure that the primary series doses are given without administering too many injections at each visit.

Не существует определенного лимита на число одновременно вводимых доз, однако следует подходить к вопросу гибко и не вводить слишком много доз за один раз

В России строгое ограничение есть только для БЦЖ, ее делают отдельно, но не из-за того, что она как-то взаимодействует с другими вакцинами, а потому, что есть риск, что по невнимательности медсестра введет ее не внутрикожно, как положено, а подкожно или внутримышечно, перепутав шприц с БЦЖ с другой вакциной. Это приведет к холодному абсцессу (осложнению). И этот риск минимизируют тем, что БЦЖ всегда делают отдельно от других вакцин (по крайней мере в России).

Также по разным причинам в инструкции к некоторым вакцинам могут быть указаны иные рекомендации. Например в инструкции к вакцине “Клещ-Э-Вак” написано, что она разрешена к введению с другими инактивированными вакцинами:

Допускается проводить вакцинацию против клещевого энцефалита одновременно (в один день) с другими инактивированными вакцинами Национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям (за исключением антирабических).

В то время как аналогичная по составу вакцина “Энцепур” разрешается к введению с любыми вакцинами:

“Вакцину Энцепур можно вводить одновременно со всеми препаратами из национального календаря профилактических прививок в один день, в разные участки тела.

Применение вакцины Энцепур совместно с другими прививками не влияет на их иммуногенность (способность выработки иммунитета).

Переносимость вакцин не ухудшается, количество побочных реакций не возрастает”.

Почти всегда такой запрет связан с тем, что просто не проводили исследований совместного применения вакцин в той конкретной стране, где в инструкции есть такое указание.

Плохая новость в том, что если медик, который проводит вакцинацию, внимательно читает инструкцию, то для него это основание вам отказать в одномоментном введении вакцин. Так что если вы планируете сделать прививки от всего и сразу, то лучше заранее изучите инструкции на предмет такой неприятности.

Менактра и превенар

У людей с ВИЧ и аспленией CDC и IAC не рекомендуют делать в один день Менактру и Превенар13, так как это приводит к снижению иммунного ответа на некоторые антигены пневмококковой вакцины.

Для здоровых людей единого мнения на этот счёт нет, но по возможности желательно разносить эти вакцины на разные приемы.

ИНТЕРВАЛЫ МЕЖДУ ПРИВИВКАМИ

Если НЕ СДЕЛАЛИ В ОДИН ДЕНЬ, то:

Обе вакцины НЕживые = любой интервал

Одна вакцина живая, вторая нет = любой интервал

Обе вакцины живые = Ждать месяц

Исключение:

Если прививаемому показана и 13-валентная и 23-валентная вакцины от пневмококковой инфекции, то они не должны вводиться одновременно, и 13-валентная вакцина должна вводиться первой.

In patients recommended to receive both PCV13 and PPSV23, the 2 vaccines should not be administered simultaneously. PCV13 should be administered first.

Если 23-валентная вакцина была введена первой, то 13-валентная не должна вводиться ранее, чем через 8 недель у лиц в возрасте 6-18 лет, и не ранее, чем через год у лиц 19 лет и старше .

If PPSV23 has been administered first, PCV13 should be administered no earlier than 8 weeks later in children 6-18 years, and one year later in adults 19 years and older.

Однако, с учетом действующего законодательства в России, месяц придется ждать между любыми вакцинами, если они не были сделаны в один день.

Подробнее об интервалах между прививками мы поговорим в следующей статье.

Частый вопрос – заразен ли привитый для окружающих подробно разобран в ранее опубликованной статье.

Не забудьте нажать “палец вверх”, если статья была вам полезна.

Поделитесь ей с друзьями!

Если у вас есть вопросы, то вы можете задать их в комментариях.

Ваша Нина

Источник