Предупредительные прививки вакцины это

Предупредительные прививки вакцины это thumbnail

Историческая справка

Возможности защиты от различных инфекционных заболеваний изучаются с давних времен. В древнем Китае, например, люди, с большим риском для жизни, втягивали в нос высушенные и измельченные корочки оспенных больных. Начало научному подходу к активной иммунизации было положено в XVIII веке Эдвардом Дженнером, именно он стал вакцинировать людей коровьей оспой, чтобы защитить их от натуральной оспы. В 1777 г. он основал в Лондоне первый в мире оспо-прививальный пункт. 100 лет спустя Луи Пастером была произведена первая успешная вакцинация человека против бешенства. Позднее последователи Пастера разработали методы специфической иммунизации для профилактики инфекционных болезней. Все это оказалось возможным благодаря предложенной Пастером методики аттенуации возбудителей — снижения их вирулентности (способности вызывать болезненные изменения) на специальных средах. В 1887 г. в Париже открывают институт вакцин и сывороток, который носит имя выдающегося ученого Луи Пастера. В 1888 г. правительство России оказывает институту материальную и интеллектуальную поддержку в лице таких выдающихся ученых, как И. И. Мечников, Н. Ф. Гамалея, Д. К. Заболотный, Г. Н. Габричевский, Л. А. Тарасевич, А. М. Безредка, М. Вайн-берг, Е. Вольман. В 1880—1888 гг. в России были созданы первые в мире антирабические станции, где проводилась профилактика бешенства. В 1880-х г. ученый Л. С. Ценковский создал первую отечественную вакцину против сибирской язвы, которая использовалась вплоть до 1942 г. В 1920 г. под руководством Н. Ф. Гамалеи в России была усовершенствована антирабическая вакцина. В 1930-х г. в нашей стране работает целая сеть институтов противоэпидемического профиля под руководством Н. Ф. Гамалеи, Л.А.Тарасевича, Д. К. Заболотного, Г. Н. Габричевского. Эра развития вакцинопрофилактики продолжается выдающимися открытиями вакцины против полиомиелита (М. П. Чумаков и А. А. Смородинцев), туляремии (Н. А. Гайский, Б. Я. Эльберт), коклюша, дифтерии, столбняка (М. С. Захарова), сибирской язвы (Н. Н. Гинзбург), сыпного тифа (М. М. Маевский, М. К. Кронтовская), бруцеллеза (П. А. Вершилова). В институте эпидемиологии и микробиологии им. Л. Пастера в Санкт-Петербурге создается собственная научная школа — исследователи под руководством академика А. А. Смородинцева получают живые вирусные вакцины. Начинается массовая вакцинопрофилактика инфекций в СССР. К концу XX века появилась возможность предотвращать развитие более 40 инфекционных заболеваний. В настоящее время в мире производится более 100 различных вакцин. С каждым годом их ассортимент расширяется, интенсивно разрабатываются комбинированные препараты, позволяющие за одну инъекцию вводить 5—6 и более вакцин. Ведутся разработки в области изменения способов введения вакцин.

 
ВАКЦИНАЦИЯ – ЗАЛОГ ЗДОРОВОГО БУДУЩЕГО 

Ежегодно в мире от инфекционных заболеваний погибают около 12 миллионов детей. Третья часть из них (4 миллиона) умирают от болезней, которые можно было предотвратить с помощью прививки. В XIX веке диагноз «корь», «дифтерия», «бешенство», «столбняк», считались смертным приговором. Начиная с XX века, благодаря достижениям в области микробиологии, вирусологии и фармакологии заболеваемость этими инфекциями сведена практически к нулю. Целью иммунизации является формирование специфического иммунитета к инфекционному заболеванию посредством искусственного создания инфекционного процесса, который в большинстве случаев протекает бессимптомно или в легкой форме (у непривитого человека течение этих болезней несет тяжелейший характер, иногда с летальным исходом).

 
МЕХАНИЗМ ДЕЙСТВИЯ ВАКЦИНЫ 

В ответ на вакцинацию в организме возникает цепочка иммунологических реакций, подразделяющихся на три периода. Первый период (латентный, или «лаг-фаза») продолжается с момента введения вакцины до появления первых антител в крови. Длительность первого, латентного, периода варьирует от нескольких дней до 2 недель и зависит от вида вакцины, способа ее введения и особенностей иммунной системы организма. Второй период характеризуется повышением концентрации специфических антител в крови. После введения некоторых вакцин специфические антитела появляются очень быстро, содержание их в крови стремительно повышается, что позволяет использовать эти вакцинные препараты для экстренной профилактики при контакте с больными корью, полиомиелитом, эпидемическим паротитом и другими инфекциями. Второй период продолжается от 4 дней до 4 недель. Третий период наступает после достижения максимального уровня специфических антител, когда их количество начинает уменьшаться — вначале быстро, затем медленно. Такое уменьшение происходит в течение нескольких лет. При повторной встрече с антигеном (при ревакцинации или инфицировании привитого ребенка) «лаг-фаза» отсутствует, так как активируются В-клетки памяти и специфический иммунный ответ возникает быстрее и отличается большей интенсивностью. 


ПОМНИТЕ, ПРИВИВКИ СПАСАЮТ ВАШЕ ЗДОРОВЬЕ И ЖИЗНЬ!

Сегодня у каждого человека имеется уникальная возможность защитить себя от тяжелых заболеваний простой и доступной манипуляцией – вакцинацией. Не упустите шанс быть здоровым! Для защиты населения от опасных инфекционных заболеваний введен Национальный календарь профилактических прививок. В этом Календаре указаны инфекционные заболевания, сроки и возраст в котором проводится вакцинация. В некоторых случаях, при выявлении каких-либо индивидуальных особенностей организма специалист составляет индивидуальный план обследования, подготовки к вакцинации и непосредственной вакцинации пациента.

РАЗНОВИДНОСТИ ВАКЦИН

Живые вакцины – производят из живых микроорганизмов с пониженной вирулентностью. Большинство таких вакцин способствуют выработке длительно сохраняющегося на высоком уровне иммунитета. Живыми являются вакцины против гриппа, кори, эпидемического паротита, желтой лихорадки и др. Инактивированные (убитые) вакцины – получают путем полного обезвреживания бактерий и вирусов с сохранением их иммуногенных свойств. Различают цельноклеточные, субъединичные, рекомбинантные вакцины и сплит-вакцины. Цельноклеточные (цельновирионные) вакцины – приготовляют путем лиофилизированного высушивания (при низкой температуре в условиях вакуума), нагревания или обработки химическими веществами (формалином, формальдегидом). К ним относятся вакцины против коклюша (АКДС), гриппа, вирусного гепатита А, клещевого энцефалита, холеры, и др. Субъединичные вакцины – содержат только поверхностные антигены, что позволяет уменьшить в вакцине содержание белка и, следовательно, снизить ее аллергенность. К субъединичным вакцинам относятся вакцины против гриппа, пневмококковой, менингококковой, гемофильной инфекций, и др. Сплит-вакцины – изготавливают из разрушенных вирусов. Они содержат фрагментированные и очищенные частицы, в том числе поверхностные белки и другие компоненты вирусов. В эту группу входят вакцины против гриппа и др. Рекомбинантные вакцины – относятся к новому поколению иммунных препаратов, произведенных посредством встраивания антигена вируса в геном дрожжевых клеток. Представителем данной группы является вакцина против вирусного гепатита В. Анатоксины – изготавливают из экзотоксинов (токсинов, выделяемых возбудителями). Они легко дозируются и комбинируются с другими вакцинами. При введении анатоксинов вырабатывается антитоксический иммунитет. Используют дифтерийный, столбнячный, стафилококковый анатоксины, а также анатоксины против ботулизма и газовой гангрены. Так же по составу вакцины делятся на: Моновакцины (содержащие один антиген), Ассоциированные, или комбинированные (имеющие несколько антигенов) вакцины, Поливалентные вакцины (состоящие из различных штаммов одного вида микроорганизмов). Любая вакцина содержит вспомогательные вещества: адсорбенты, консерванты, эмульгаторы, индикаторы рН, стабилизаторы. Адсорбенты (адъюванты) – нерастворимые соли алюминия (фосфат или гидроокись), усиливающие действие вакцины и, следовательно, значительно увеличивающие силу иммунного ответа. Иногда в качестве адсорбентов используются транспортные белки (они входят в состав дифтерийного, столбнячного анатоксинов). Консерванты подавляют размножение «посторонних» микроорганизмов. Для этой цели используют тиомерсал (мертиолят), формальдегид, феноксиэтанол, фенол и антибиотики (неомицин, гентамицин, полимиксин). Содержание консервантов в вакцинах настолько низкое, что не представляют какой-либо опасности для человека. Эмульгаторы добавляют для улучшения растворения сухих вакцин. В качестве стабилизаторов используют декстран, сахарозу, сорбит, желатин, альбумин. В качестве индикатора рН часто используют метиловый красный. Можно сразу обнаружить «сдвиг» показателя кислотности по изменению цвета препарата и забраковать вакцину.

Читайте также:  Справка о прививках краснодар


 ЭФФЕКТИВНОСТЬ ВАКЦИН 

Эффективность вакцин входящих в Национальный календарь профилактических прививок подтверждается следующими показателями: Невосприимчивыми становятся К полиомиелиту – 95% привитых; К дифтерии – 95% привитых; К столбняку – 95% привитых; К кори – 98% привитых; К эпидемическому паротиту – 90% привитых; К краснухе – 100% привитых; К гепатиту В – 84-98% привитых (в зависимости от возраста); К коклюшу – 80-90% привитых; К туберкулезу – 70-85% привитых детей, практически полностью защищая их от генерализованных форм инфекции (диссеминированный туберкулез, туберкулезный менингит).


БЕЗОПАСНОСТЬ ВАКЦИН 

Гарантированно говорить о полной безопасности вакцины не имеет смысла, так как нельзя говорить о полной безопасности любого даже самого безобидного препарата. Но гарантированно можно говорить о следующем:

1. Все серии вакцин проверяются непосредственно на производстве и в отделе контроля качества предприятия. Кроме того, они проходят контроль по производственным протоколам и выборочный лабораторный контроль в Национальном органе контроля – ГИСК им. Л.А. Тарасевича. Такая тройная экспертиза обеспечивает надлежащее качество выпускаемых серий вакцин.

2. Все вакцины обладают определенной степенью реактогенности, которая лимитирована нормативной документацией на препараты.

3. В соответствии с Законом Российской Федерации “О лекарственных средствах”, утвержденным 22 июня 1998 г, производство лекарственных средств, к которым относятся и иммунобиологические препараты, осуществляется предприятиями-производителями лекарственных средств, имеющими лицензию на их производство”.

4. В России на 16 предприятиях производится 50 видов вакцин против 28 инфекционных заболеваний. Практически все вакцины соответствуют по основным показателям безопасности и эффективности требованиям. 


СПОСОБЫ ВВЕДЕНИЯ ВАКЦИН

Вакцинацию можно проводить следующими способами:

– орально – дозу вакцины закапывают в рот. После прививки в течение часа не разрешается прием пищи и жидкости.;

– интраназально – препараты впрыскивают в носовые ходы, что способствует выработке не только общего, но и местного иммунитета.;

– накожно (скарификационная вакцинация) оптимальна при иммунизации живыми вакцинами против особо опасных инфекций (чумы, туляремии и др.). Вакцины наносят на наружную поверхность плеча, а затем сухим оспопрививочным пером делают насечки через каплю.;

– внутрикожно – введение вакцины осуществляется в области наружной поверхности плеча (живая вакцина против туберкулеза (БЦЖ)).;

– подкожно – вакцинация используется для введения некоторых живых вакцин (коревой, паротитной и др.). Инъекцию делают в подлопаточную область или область наружной поверхности плеча.;

– внутримышечно – вакцинация в основном используется для введения инактивированных вакцин, так как местная реакция при данном способе иммунизации менее выражена. Детям в возрасте до 3 лет вакцины рекомендуется вводить в переднебоковую часть бедра, детям старше 3 лет, подросткам и взрослым — в область дельтовидной мышцы плеча. 


 ОДНОВРЕМЕННОЕ ВВЕДЕНИЕ НЕСКОЛЬКИХ ВАКЦИН

Согласно Приказу Минздрава РФ № 229 от 27.06.2001 г. возможности одномоментной вакцинации с использованием любых сочетаний нескольких вакцин значительно расширились. Возникает обоснованный вопрос, какова реакция организма на такой способ вакцинации? Наш организм постоянно сталкивается с огромным числом инфекционных возбудителей и на каждый из них вырабатывает антитела определенного вида, поэтому при одновременном введении нескольких вакцин, число антител начинает расти в геометрической пропорции, без угнетения иммунитета. Таким образом, количество вакцин, которое можно ввести ребенку одновременно без всякого ущерба для его иммунитета, не ограничено, к тому же при сочетанной иммунизации сокращается частота реакций и побочных эффектов. На сегодняшний день перед ВОЗ стоит задача создания комбинированной вакцины, которая могла бы защитить от 25—30 инфекций, вводилась бы однократно внутрь, в самом раннем возрасте, и не вызывала бы побочных явлений. 

Источник: https://www.epidemiolog.ru/vac_prof/detail.php?ID=2378219; https://www.who.int/ru/

Источник

Производство вакцин – многоступенчатый, длительный процесс, который требует участия тысяч человек и серьезных материальных вложений. Его стандарт был разработан в середине XX века. На сегодняшний день в мире зарегистрировано около 100 вакцин, и ученые накопили достаточно опыта, чтобы быстро отреагировать и разработать новый препарат в случае критической ситуации.

С чего все начинается

Вакцины не разрабатываются просто так, по чьему-либо желанию. Процесс инициируется, когда инфекция приобретает угрожающий характер (эпидемии или пандемии), особенно всемирного масштаба. Огромное количество накопленных статистических данных служит толчком к поиску нового препарата.

Читайте также:  Куда делается прививка вгв

В разработке принимают участие ученые разных направлений – вирусологи, биологи, иммунологи, бактериологи и другие. И на первом этапе им необходимо не только выявить возбудителя и «опознать» его, но и тщательно изучить особенности жизнедеятельности, генетического материала, антигенов. Более того, перед исследователями стоит задача понять, как организм отвечает на проникновение микроба, какие иммунные механизмы задействованы.

Изучение свойств патогена происходит как в условиях лаборатории (с привлечением животных или in vitro), так и путем непосредственного наблюдения за инфицированными людьми.

in vitro – это технология выполнения опытов «в пробирке», т.е. вне живого организма.

Пробирки.jpg

В процессе принимают участие одновременно несколько групп ученых, каждая из которых имеет свои задачи и методы. Таким образом, инфекционного возбудителя исследуют с максимального числа сторон.

Здесь же формируются гипотезы, каким может быть будущий препарат, – живой, инактивированный, синтетический. Важными моментами являются, например:

  • как будет происходить оценка иммунного ответа;

  • какие антигены возбудителя нужно взять;

  • какая питательная среда потребуется для выращивания микроорганизма;

  • сколько антигена надо, чтобы стимулировать формирование иммунитета у людей разных возрастов;

  • сколько дозировок нужно и с какой периодичностью введения, и так далее.

НА ЗАМЕТКУ! Антиген – часть инфекционного возбудителя, к которому иммунная система вырабатывает защитные антитела. Для разных антигенов (даже одного микроба) нужны разные антитела.

То есть, на этапе разработки вакцин ученые сталкиваются с огромным количеством вопросов, выдвигают и проверяют десятки и сотни гипотез, при необходимости меняют концепцию. Понятно, что в экстренных случаях такая работа ведется непрерывно, круглосуточно, и в ней задействовано в несколько раз больше исследований, чем в штатном режиме.

НА ЗАМЕТКУ! Возникает вопрос: почему бы тогда не создать одну вакцину, например, от гриппа, и делать прививку каждый год, не вспоминая об этом заболевании? Дело в том, что вирус гриппа постоянно мутирует, свойства антигенов изменяются, и ученым приходится ежегодно создавать новые препараты. Но это не значит, что новую вакцину делают «наугад». ВОЗ располагает сетью специализированных центров, в которых происходит сбор данных о вспышках гриппа по всему миру. Ученые непрерывно анализируют штаммы, выявляют новые разновидности, проводят антигенные исследования. То есть, состав будущего препарата обоснован конкретными фактами. Более подробно о вакцине от гриппа можно почитать в нашей статье: «Вековая война с гриппом: про вакцины от начала до наших дней». К слову, другая ситуация с ВИЧ. Мутации этого вируса происходят в несколько раз чаще, чем гриппа. «Уловить» изменения на данный момент исследователи не могут, поэтому вакцины от него нет.

Этапы.jpg

Доклинический этап

Когда базовые исследования закончены, и прототип препарата готов, начинается доклинический этап. Испытания проводятся на животных, параллельно отрабатывается технология производства вакцины.

Среди важных моментов доклинических испытаний можно отметить следующие:

  • происходит оценка возможности вакцины формировать иммунитет;
  • выявляется токсичность препарата для живого организма;
  • определяется минимальная, оптимальная и максимально допустимая дозировка;
  • исследуется воздействие на плод (вероятность развития аномалий и прочее);
  • оценивается способность препарата влиять на образование и/или рост опухолей;
  • оцениваются аллергизирующие свойства и так далее.

В процессе тестирования животным вводят вакцину в различных концентрациях и в разных состояниях организма, наблюдая и фиксируя при этом малейшие изменения. Нужно отметить, что большая часть вакцин не проходит доклинические испытания, так как не приводит к цели – иммунный ответ на введение отсутствует.

НА ЗАМЕТКУ! Для проведения доклинических исследований, как правило, берут два вида животных. Чаще всего, это – мыши и приматы. Идеальный вариант – когда в тестировании принимают участие от трех и более видов. Это дает возможность подобрать оптимально подходящую дозировку и обеспечить полную безопасность препарата.

Если доклинические испытания прошли успешно, для дальнейших испытаний нужно получить разрешение в специализированных органах. Авторы подают заявку, в которой подробно описываются проведенные исследования и тесты, обосновывается необходимость применения препарата и другие моменты. В ответ получают либо отказ, либо разрешение. При положительном решении разработка вакцины переходит в клинический этап.

ЭТО ИНТЕРЕСНО! Своеобразные «прививки» от оспы делали в Китае в 15 веке. У больного человека брали струпья, растирали в порошок и давали вдыхать здоровому. Среди других вариантов «вакцинации» – надетое на здорового человека белье инфицированного или вкладывание в ноздри ватного тампона, пропитанного гнойным содержимым язв. Какими бы варварскими не казались нам эти методы сейчас, в то время они реально помогали!

Клинический этап разработки

Этот этап предполагает непосредственное участие в испытаниях людей-добровольцев. Неважно, для какого возраста разрабатывается вакцина, ее действие изучают только на здоровых взрослых людях. Клинические исследования проводятся в три фазы. Процесс разделен на стадии, что позволяет контролировать тестирование препарата, постепенно увеличивая количество людей. Это значительно снижает риски: всё что будет тестироваться массово, уже прошло испытания в узких кругах. И, конечно, такой подход позволяет прекратить тестирование на любом этапе в случае обнаружения нежелательных явлений. Именно поэтому каждая фаза имеет огромную значимость и свои цели.

Первая фаза

Проводится на совсем небольшом количестве людей (десятки людей). Её цель – подтверждение первичной безопасности для людей в принципе. Происходит исследование вакцины в действии. Ученые обращают внимание на следующие моменты:

  • переносимость и побочные явления;
  • особенность иммунного ответа (скорость, выраженность и другие);
  • взаимодействие с другими препаратами;
  • безопасность диапазона доз.

В процессе тестирования может изменяться не только дозировка, но и состав препарата. Вакцину вводят не сразу всем участникам, а поочередно, чтобы избежать массовых негативных проявлений в случае, если что-то пойдет не так.

Вторая фаза

Цель этой стадии – оценка эффективности (иммуногенности) вакцины. Во второй фазе испытаний принимает участие несколько сотен добровольцев. На данном этапе происходит еще большая отработка свойств и дозировки препарата. Тщательно фиксируются и анализируются реакции организма, определяется периодичность и сроки вакцинации, особенности транспортировки и прочие моменты.

Читайте также:  Прививка от инфекций кошек

Третья фаза

Её цель – доказать безопасность и эффективность вакцины при массовом применении в динамике, а также удостовериться, что польза вакцины компенсирует те нежелательные реакции, которые неминуемо будут выявлены (хотим уточнить, что допускаются лишь легкие реакции). Именно на третьей фазе ученые делают выводы, которые невозможны при небольшой численности испытуемых: действие вакцины изучается на тысячах человек. Анализируется частота побочных эффектов (в том числе отдаленных), продолжается определение безопасности.

После того, как все фазы клинического этапа исследований успешно пройдены, данные о них поступают в специализированные структуры. Положительное решение означает, что вакцина может быть запущена в производство; препарат регистрируют, а фирме-изготовителю выдается соответствующая лицензия.

Нужно отметить, что лицензируется не только сама вакцина, но и ее производство. Если в процесс изготовления вносятся какие-либо изменения или он не может в полной мере обеспечить качество, препарат заново проходит испытания. Вакцины выпускаются сотнями тысяч дозировок, и важно, чтобы каждая из них соответствовала ранее заявленным протоколам.

Дальнейшая «жизнь» вакцины

Выдача лицензии и массовый выпуск вакцины не означает, что исследования закончились. Существует еще четвертая фаза клинических исследований. Она проводится уже после того, как препарат становится доступным для людей через розничную сеть медицинский организаций. Это постмаркетинговые испытания или так называемый постклинический мониторинг. Он имеет масштабный характер, позволяют получить еще более подробную информацию о безопасности и эффективности препарата. Также на четвертой фазе оцениваются комбинации с другими препаратами и уточняются вновь открывшиеся данные и гипотезы.

Может быть и такое: вакцину зарегистрировали и начали применять, но внезапно сняли с производства. Дело в том, что даже несколько тысяч человек в некоторых случаях не могут являться абсолютным показателем безопасности. Только внедрение в массы способно в полной степени проявить те или иные качества препарата. Однако такие случаи – редкость.

НА ЗАМЕТКУ! Стоит коснуться и такого вопроса, как материальные затраты. Разработка вакцины требует огромных вложений. Это и заработная плата сотрудникам, и содержание лабораторий и центров, содержание животных, реагенты и многое-многое другое. Кроме того, значительная доля от продаж уже зарегистрированного препарата уходит на постклинический мониторинг – сбор, фиксацию и анализ данных. 

KAT_9674.JPG

Примечательно, что даже после того, как все фазы испытаний пройдены, наблюдения за действием препарата продолжают вестись постоянно в течение многих лет: ученые отслеживают влияние на организм в долгосрочном отношении, анализируют данные о динамике заболевания с момента внедрения препарата.

Как же получают сами препараты?

Непосредственное производство вакцины зависит от ее вида. В общих чертах его можно описать следующим образом.

1. Живая вакцина (ослабленная)

  • Выбирают штамм возбудителя.
  • Ослабляют микроорганизм.
  • Размножают (культивируют) в питательной среде.
  • Очищают от примесей.
  • Стандартизируют (приводят к нужной концентрации, фасуют).

2. Инактивированная вакцина (убитые возбудители).

  • Выбирают штамм.
  • Культивируют.
  • Инактивируют (убивают).
  • Очищают.
  • Стандартизируют.

3. Рекомбинантная вакцина. Используются методы генной инженерии.

  • У патогенного возбудителя берут часть генетического материала.
  • Встраивают его в геном клеток, которые будут его производить (чаще всего, это – дрожжи).
  • Культивируют клетки в питательной среде.
  • Выделяют и очищают антиген.
  • Готовят вакцину.

Кроме этого, существуют и другие способы производства вакцин, инновационные и дорогостоящие, например, полное воссоздание вируса искусственным путем. Иммунитет реагирует на него, как на «живого», но вероятность заражения нулевая, так как в такой частице отсутствует геном.

НА ЗАМЕТКУ! Одни из последних разработок ученых – создание вакцин на основе растительных вирусов. Их комбинируют с антигеном возбудителя болезни человека. Подобные исследования с использованием вируса табачной мозаики уже проводятся в отношении краснухи, COVID, сибирской язвы.

Сколько времени требуется для создания препарата

Длительность разработки и производства вакцин зависит от многих факторов: штамма возбудителя, антигенных свойств, того, насколько он изучен. В среднем, этапы занимают следующее количество времени:

  • Базовые исследования – 2-4 года;
  • Доклинические испытания – до 2-х лет;
  • Первая фаза клинического этапа – 1-5 лет;
  • Вторая фаза – 2-3 года;
  • Третья – 5 и более лет.

Суммарно на разработку одной вакцины уходит примерно 10-15 лет (без мониторинга на практике после внедрения в производство).

В ряде ситуаций допускается экстренный выпуск препаратов. Однако это не означает, что они «не проверены». В любом случае вакцина проходит установленные протоколом этапы, но в очень сокращенном варианте. В качестве примера можно взять COVID-19 или вирус Эбола.

То же происходит, если свойства, присущие семейству возбудителя, хорошо известны. Например, ежегодные мутации вируса гриппа не являются препятствием для быстрого производства новой вакцины.

Особенности контроля

Каждый этап производства вакцин жестко контролируется. Стандарты и положения, регулирующие нормы качества препаратов, изложены в сборнике – фармакопее. Она имеет юридическую силу и находится под государственным контролем.

Люди-добровольцы, которые участвуют в испытаниях, обязательно должны дать на это свое согласие на основании утвержденного этическим комитетом протокола. Непосредственно на производстве надзору подвергается каждая серия выпущенного препарата. Контролируется не только состав вакцины, но и стерильность, концентрация, требования к фасовке, упаковке и так далее.

На фоне вышесказанного утверждения противников вакцинации выглядят, по меньшей мере, смешными. А если вы запутались в современных вакцинах, раздумываете – делать прививки или нет, наши специалисты всегда придут на помощь: проконсультируют, объяснят, посоветуют.

Читайте также

4 февраля – Всемирный день борьбы против рака

Количество заболевших коклюшем в России за год выросло на 40%

Полиомиелит – кошмар двадцатого столетия

Источник