Живые бактерии для прививок

Живые бактерии для прививок thumbnail

Несмотря на изобретение многочисленных медицинских препаратов с хорошим показателем эффективности, вакцинация по-прежнему так и продолжает оставаться единственным надежным способом профилактики некоторых инфекционных заболеваний.

С целью защиты организма ребенка от воздействия патологической микрофлоры применяют различные варианты прививочного состава, позволяющие добиться желаемого результата. Однако наиболее действенными все же так и продолжают оставаться живые вакцины.

Технология получения живых вакцин

Фото 2Живая вакцина – это препарат, выпущенный в форме суспензии или сухого порошкообразного вещества, для растворения которого применяется вода для инъекций.

В составе живых прививок присутствуют ослабленные болезнетворные микроорганизмы, обладающие полным перечнем характеристик полноценного инфекционного агента, с которым организм ребенка может столкнуться в условиях реальной жизни.

Подобные составы формируют устойчивую реакцию иммунной системы на воздействие инфекционного возбудителя даже после одного введения, поэтому считаются наиболее эффективными по сравнению с аналогами других типов прививок.

В качестве основных компонентов в таких вакцинах используются прошедшие ослабление или очищение в лабораторных условиях болезнетворные бактерии. Живой прививочный состав вводится путем инъекции. Также допускается аэрозольное или интраназальное введение.

Живые вакцины требуют строгого соблюдения условий хранения. Это необходимо для сохранения микроорганизмами полного спектра свойств.

Механизм действия

Фото 3Живая вакцина содержит ослабленные болезнетворные микробы. Поскольку речь идет о прошедших очищение микроорганизмах, они не способны развить течение полноценного инфекционного заболевания.

Зато их сил вполне хватает для провокации правильной реакции иммунной системы. После попадания внутрь патогенная микрофлора начинает свое разрушающее действие, в результате чего организм активно вырабатывает антитела к попавшему внутрь вирусу.

Таким образом формируется надежный защитный внутренний барьер против инфекционного агента. Несмотря на доказанную безопасность подобного типа прививок, отношение к живым среди специалистов так и продолжает оставаться двояким. Определенное количество медицинских работников продолжает считать такой вид прививки опасным для здоровья ребенка.

Некоторые медики полагают, что такую вакцину ставить ребенку нельзя, поскольку неокрепший детский организм может не справиться даже с воздействием ослабленного вируса, результатом чего может стать полноценное инфекционное заболевание.

Однако подобное мнение так и продолжает оставаться мнением, пока достаточное количество детей получают надежную и долгосрочную защиту от инфекций путем введения им живого прививочного состава.

Виды и их характеристика

Сегодня в медицине применяют следующие разновидности вакцин, позволяющих получить желаемую реакцию со стороны иммунной системы:

  1. живые вакцины. Мы уже говорили, что в составе таких препаратов присутствуют живые возбудители инфекционных заболеваний, прошедшие очищение в условиях лаборатории. Подобные прививочные составы являются наиболее тяжелыми с сточки зрения медицины, поскольку способны оказывать максимальное давление на организм по сравнению с другими аналогами. Такие прививки хранят в строго оговоренных инструкцией условиях;
  2. химические вакцины. Создают путем извлечения из клетки вируса антигенов к нему. Такие препараты позволяют прививать детей разного возраста, находящихся в различных весовых категориях;
  3. корпускулярные вакцины. Такие прививки содержат умерщвленные клетки патогенной микрофлоры, за счет чего воздействие инфекционного агента на организм ребенка оказывается минимальным. Но при этом иммунная система организма реагирует на возбудителя должным образом, вырабатывая антитела против воздействия патогенных микроорганизмомов. Из-за применения мертвых болезнетворных агентов эффект от применения корпускулярной вакцины будет более слабым и коротким, чем после использования живого аналога. Поэтому в данном случае потребуется скорая ревакцинация. Условия хранения данного вида вакцин менее жесткие. Для сохранения составом базовых свойств достаточно не замораживать прививочный состав.

Живая вакцина является наиболее эффективной в плане продолжительности полученного эффекта.

Особенности применения

Фото 4Помимо строгого соблюдения правил хранения, живые вакцины также требуют сохранения интервалов между процедурами.

Проведение вакцинации должно осуществляться с интервалом не менее 1 месяца.

В противном случае могут последовать побочные проявления со стороны иммунной системы, а полученный результат будет слабым, что не даст нужного защитного эффекта.

Применение живого прививочного состава, ранее подвергшегося заморозке или перевезенного в открытой упаковке, строго запрещено.

Какие вакцины относятся к живым – полный перечень

Живые препараты используют далеко не всегда, их применяют с целью иммунизации против следующих недугов:

Фото 5

  • туберкулез;
  • полиомиелит;
  • оспа;
  • паротит;
  • бешенство;
  • корь;
  • грипп;
  • коревая краснуха;
  • Ку-лихорадка;
  • желтая лихорадка;
  • туляремия;
  • сибирская язва;
  • чума;
  • некоторые другие.

В данный перечень входят как обязательные вакцины, так и добровольные, которые проводят или по желанию родителей или в случае острой необходимости (к примеру, в процессе вспышки эпидемии).

Список достоинств

Несмотря на опасения медиков, живые вакцинные препараты все же обладают неплохим набором достоинств, которые делают их применение обоснованным:

Фото 6

  • возможность малого применения прививочных доз и однократного введения препарата;
  • более долгая и сильная реакция иммунной системы;
  • возможность введения не только подкожно и внутримышечно, но и перорально или аэрозольно, а также интраназально;
  • быстрое формирование реакции со стороны иммунной системы;
  • простота изготовления;
  • доступная стоимость.

Перечисленные плюсы делают применение живых составов удобным и весьма эффективным.

В чем заключается недостаток использования аттенуированных препаратов?

Аттенуированные (или ослабленные) препараты не идеальны, они, как и любое другое медицинское средство, имеют свои недостатки, в числе которых:

Фото 7

  • возможное появление осложнений у детей и взрослых с ослабленным иммунитетом;
  • длительный период получения ослабленных штаммов;
  • высокая вероятность порчи прививочного состава из-за неправильного хранения, транспортировки или применения;
  • возможность занесения в организм латентных вирусов.

Из-за перечисленных недостатков многие специалисты не рекомендуют проводить иммунизацию с применением живых прививочных составов.

Как характеризуется иммунный ответ?

После введения в организм живого состава формируется стандартный иммунный ответ в виде выработки защитной системой антител против инфекционного возбудителя. Как правило, после применения живой вакцины формирование ответа иммунной системы происходит довольно быстро.

Читайте также:  Прививка акдс нурофен комаровский

Организм практически мгновенно начинает реагировать на попавшего внутрь инфекционного агента. Благодаря данному моменту человек получает защиту против инфекции примерно в 2 раза быстрее, чем после применения прививочных составов других типов.

В некоторых случаях иммунная реакция сопровождается повышением температуры, появлением слабости и сонливости, а также вялостью, ухудшением аппетита и некоторыми другими проявлениями. Подобные симптомы после применения живых вакцинных препаратов также считаются нормой.

Видео по теме

О плюсах и минусах живых и мертвых вакцин в видео:

Использовать живой прививочный состав для иммунизации своего ребенка или нет – личное дело каждого родителя. Но не стоит забывать, что если сравнить побочные эффекты от проведенной вакцинации и осложнения, вызванные полноценной инфекцией, вторые способны нанести организму ребенка больший вред, даже став причиной инвалидности и летального исхода.

Источник

Живые и инактивированные вакцины: в чем разница

Вакцинация – важная профилактическая мера многих тяжелых заболеваний, она играет ключевую роль в вопросе сохранения здоровья нации. Поэтому следует разбираться, какими препаратами она проводится. В зависимости от вида введенной вакцины, могут возникнуть специфические, но, при этом, вполне нормальные реакции организма на нее. Не стоит этого бояться, важно знать больше полезной информации о прививках, и тогда страх уйдет, а на его место придет осведомленность и понимание.

Основные виды современных вакцин

Вакциной называется препарат, который используется для формирования иммунитета организма к микроорганизму, который является возбудителем определенной болезни. Иммунизация, или вакцинация – это процесс, при котором данный иммунный ответ формируется, благодаря введению вакцины.

Видов вакцин есть много, классифицируются они по разным критериям. Но по основной классификации они бывают живыми и инактивированными.

Живые, или аттенуированные вакцины производят из ослабленным патогенных микроорганизмов, которые модифицируются искусственным путем. По сути, человеку вводят вирусы или бактерии, которые являются возбудителями определенной болезни, но они настолько ослаблены, что не могут спровоцировать возникновение заболевания. Они размножаются в организме, стимулируя, таким образом, выработку иммунитета к себе. Компоненты аттенуированных вакцин получают способом их культивирования на клеточных культурах или куриных эмбрионах, поэтому у некоторых людей данные препараты могут вызывать аллергию. Например, прививаться живыми вакцинами нельзя людям, имеющим аллергию на яйца.

У живых вакцин есть как преимущества, так и недостатки. Главное их достоинство – они формируют стойкий иммунитет на длительный период времени. Однако есть и риски – штамм вакцины может вызвать реальное заболевание, хотя это и бывает очень редко. Местные реакции на такие вакцины проявляются более явно: может болеть и опухать место укола, подниматься температура тела и т.д. Все это считается нормой. Также есть предостережения: нельзя вводить живые препараты людям с ВИЧ, лейкемией и другими болезнями, связанными с иммунитетом человека.

Инактивированными, или убитыми вакцинами называются препараты, не содержащие живых микроорганизмов. Чтобы иммунная реакция организма была выраженной, в такие вакцины почти всегда добавляют адсорбенты – это специальные вещества, которые стимулируют ответ организма на возбудитель. Чаще всего адсорбентами бываю соли алюминия (фосфат алюминия или гидроксид).

Поскольку в инактивированных вакцинах нет живых вирусов и бактерий, они никогда не вызывают заболевание, против которого прививается человек. Поэтому именно инактивированные вакцины используют для защиты больных иммунодефицитом, лейкемией и другими иммунными заболеваниями. Но есть и недостатки таких препаратов: их всегда нужно вводить несколько раз с определенными промежутками (проводить ревакцинацию), при этом иммунитет начинает формироваться только после второго или третьего введения.

Трудно ответить на вопрос: какие вакцины лучше, живые или инактивированные? Живые гораздо лучше и быстрее формируют иммунитет, но являются менее безопасными, чем инактивированные, не подходят для людей с некоторыми заболеваниями, могут вызвать аллергию. Живые вакцины, чаще всего, дешевле, инактивированные – дороже. Ясно одно: если нет особых противопоказаний, прививаться живыми вакцинами можно и нужно. Не стоит опасаться вакцинации, следует бояться болезней, против которых она проводится.

Источник

Живые вирусные вакцины. Особенности живых вакцин.

Живые вирусные вакцины — это, как правило, искусственно ослабленные посредством культивирования или природные авирулентные либо слабовирулентные иммуногенные штаммы вируса, которые, размножаясь в естественно восприимчивом организме, не проявляют повышения вирулентности и потеряли способность к горизонтальной передаче.

Безопасные высокоиммуногенные живые вакцины являются лучшими из всех существующих вирусных вакцин. Применение многих из них дало блестящие результаты в борьбе с наиболее опасными вирусными болезнями человека и животных. В основе эффективности живых вакцин лежит имитация субклинической инфекции. Живые вакцины вызывают иммунный ответ на каждый протективный антиген вируса.

Основным преимуществом живых вакцин считается активизация всех звеньев иммунной системы, вызывающая сбалансированный иммунный ответ (системный и локальный, иммуноглобулиновый и клеточный). Это имеет особое значение при тех инфекциях, когда клеточный иммунитет играет важную роль, а также при инфекциях слизистых оболочек, где требуется как системный, так и локальный иммунитет. Местное применение живых вакцин обычно является более эффективным для стимулирования локального ответа у непраймированных хозяев, чем инактивированные вакцины, вводимые парентерально.

В идеале, вакцинация должна повторять иммунологические стимулы естественной инфекции, сводя до минимума нежелательные эффекты. Она должна вызывать напряженный продолжительный иммунитет при введении в небольшой дозе. Ее введение, как правило, не должно сопровождаться слабой, кратковременной общей и местной реакцией. Хотя после введения живой вакцины иногда допускается развитие у небольшой части реципиентов отдельных слабовыраженных клинических признаков, напоминающих легкое течение естественной болезни. Живые вакцины больше, чем другие, отвечают этим требованиям и, кроме того, отличаются низкой стоимостью и простотой применения разными способами.

вирусные вакцины

Вакцинные вирусные штаммы должны обладать генетической и фенотипической стабильностью. Их приживляемость в привитом организме должна быть выраженной, а способность к размножению ограниченной. Вакцинные штаммы обладают значительно менее выраженной инвазивностью, чем их вирулентные предшественники. Это связано в значительной мере с их частично ограниченной репликацией в месте проникновения и в органах-мишенях естественного хозяина. Репликация вакцинных штаммов в организме легче ограничивается естественными неспецифическими защитными механизмами. Вакцинные штаммы размножаются в привитом организме до тех пор, пока его защитные механизмы не затормозят их развитие.

В течение этого времени образуется такое количество антигена, которое значительно превышает его при введении с инактивированной вакциной.

Для аттенуации вирусов обычно применяют пассажи вируса в неестественном хозяине или культуре клеток, пассажи при пониженной температуре и мутагенез с последующей селекцией мутантов с измененным фенотипом.

Большинство современных живых вакцин, используемых для профилактики инфекционных болезней человека и животных, получены пассажами вирулентного вируса в гетерологичном хозяине (животные, куриные эмбрионы, различные клеточные культуры). Аттенуированные в чужеродном организме вирусы приобретают множественные мутации в геноме, препятствующие реверсии вирулентных свойств.

В настоящее время в практике широко применяют живые вакцины против многих вирусных заболеваний человека (полиомиелит, желтая лихорадка, грипп, корь, краснуха, паротит и др.) и животных (чума крупного рогатого скота, свиней, плотоядных, бешенство, герпес-, пикорна-, коронавирусные и другие болезни). Однако еще не удалось получить эффективных вакцин против ряда вирусных болезней человека (СПИД, парагрипп, респираторно-синциальная инфекция, денгевирусная инфекция и другие) и животных (африканская чума свиней, инфекционная анемия лошадей и другие).

Имеется много примеров тому, что традиционные методы аттенуации вирусов еще не исчерпали своих возможностей и продолжают играть существенную роль в разработке живых вакцин. Однако их значение постепенно уменьшается по мере увеличения масштабов использования новой технологии конструирования вакцинных штаммов. Несмотря на значительный прогресс в этой области, принципы получения живых вирусных вакцин, заложенные Л. Пастером, до сих пор не потеряли своей актуальности.

– Также рекомендуем “Аттенуация вирусов. Генетические мутации вирусов.”

Оглавление темы “Физические методы инактивации вирусов для вакцин.”:

1. Физические методы инактивации вирусов. Гамма-лучи в инактивации вирусов.

2. Оценка полноты инактивации вирионов. Вакцина против полиомиелита – ящура.

3. Проблемы инактивации вирусов. Пути разрешения проблем при физической инактивации вирусов.

4. Живые вирусные вакцины. Особенности живых вакцин.

5. Аттенуация вирусов. Генетические мутации вирусов.

6. Делеционные мутации вирусов. Вставки или инсерции в геном вируса.

7. ДИЧ-мутации вирусов. Аттенуация вируса серийными пассажами.

8. Учение об аттенуации Сэбина. Аттенуация вируса полиомиелита по Сэбину.

9. Живая аттенуированная вакцина против кори. Аттенуированный вирус паротита, ветряной оспы, краснухи.

10. Аттенуация вируса гриппа. Свойства аттенуированного вируса гриппа.

Источник

Автор Хусаинов Руслан Халилович На чтение 7 мин. Опубликовано 22.01.2020 10:20
Обновлено 22.01.2020 08:30

Вакцины играют важную роль в борьбе с инфекционными заболеваниями. Какие компоненты обычно содержатся в вакцинах и какова их цель? 

Когда нам делают прививку, ее компоненты запускают нашу иммунную систему, вызывая события, защищающие нас от патогена в будущем. Но при взгляде на ингредиенты в обычных вакцинах обнаруживается длинный список других компонентов, роль которых может показаться не ясной.

Наша иммунная система и активные ингредиенты

Активный ингредиент в вакцине обычно производится из вирусного или бактериального патогена. Существует два различных подхода к этому, причем патоген либо жив, либо инактивирован. Вакцины, содержащие живые бактерии или вирусы, называются живыми аттенуированными вакцинами. Патоген ослаблен, но еще способен вызвать сильный иммунный ответ.

Живые аттенуированные вакцины для всех не подходят. Если у человека ослаблен иммунитет, он может заболеть той болезнью, от которой его должна защищать вакцина.

В связи с этим чаще в вакцинах используют инактивированную версию активных ингредиентов, принимающих форму целых бактерий или вирусов, которые были убиты. Однако большинство вакцин на самом деле являются бесклеточными, что означает, что они не содержат всего патогенного организма. Вместо этого они состоят из частей патогена, таких как белки или молекулы сахара. Наш организм распознает эти молекулы как чужеродные и вырабатывает иммунный ответ.

Примерами бесклеточных вакцин являются:

  • анатоксиновые вакцины, содержащие инактивированные токсины из патогенных бактерий
  • конъюгированные вакцины изготавливают из комбинации патоген-специфических молекул сахара и анатоксиновых белков, так как сами сахара не вызывают достаточно сильных иммунных реакций
  • рекомбинантные вакцины, изготовленные с использованием бактерий или дрожжевых клеток, чтобы сделать много копий определенных молекул из патогена

Вспомогательные ингредиенты вакцины

Помимо активного ингредиента, вакцины содержат много других соединений.

Вспомогательные вещества включают консерванты и стабилизаторы, которые используют для производства вакцины, и адъюванты, которые делают вакцины сильнее.

Хотя многие вакцины содержат активные ингредиенты, которые достаточно сильны, некоторые из них нуждаются в небольшой дополнительной помощи, чтобы быть эффективными.

Адъюванты

Адъюванты — это соединения, которые вызывают усиленный иммунный ответ, улучшая работу вакцины. Примеры адъювантов включают:

  • металлы
  • биологические молекулы, выделенные из бактерий и синтетической ДНК

Алюминий в форме соли алюминия используется в различных вакцинах, включая обычные детские вакцины. Ученые считают, что этот адъювант увеличивает выработку антител.

Алюминий — это природный металл, который имеет много применений, кроме его адъювантных свойств. Банки, фольга и оконные рамы содержат алюминий. Соли алюминия также используются в пищевой промышленности в качестве добавок.

Как адъювант, алюминий имеет долгую историю, начиная с 1930-х годов. Несмотря на его широкое использование, некоторые ученые считают, что металл может вызвать повреждение нервной системы и способствовать аутоиммунным заболеваниям. Однако многие эксперты не согласны с этой оценкой.

В исследовании 2011 года ученые пришли к выводу, что «эпизодическое воздействие вакцин, содержащих алюминиевый адъювант, является крайне низким риском для младенцев, и преимущества использования вакцин, содержащих алюминиевый адъювант, перевешивают любые теоретические проблемы».

Другим примером адъюванта является сквален — природное масло. Вакцина против гриппа, лицензированная для взрослых, содержит адъювант под названием MF59, представляющий собой эмульсию, содержащую сквален. Сквален, используемый в MF59, очищается от жира печени акулы. 

В 2000 году исследовательская группа указала на связь между скваленом и синдромом войны в Персидском заливе, вызвав опасения по поводу безопасности этого адъюванта. Однако последующие исследования не подтвердили эти выводы, и в 2006 году Всемирная организация здравоохранения (ВОЗ) пришла к выводу, что эти опасения «необоснованны».

Консерванты, стабилизаторы и эмульгаторы

Количество вспомогательных веществ в любой конкретной вакцине зависит как от процесса производства, так и от предполагаемого использования вакцины.

Тимеросал является консервантом, главным образом используемым в вакцинах, которые поставляются в мультидозных флаконах. Тимеросал убивает бактерии и грибки, которые могут загрязнять вакцину. Это органическое соединение содержит около 50% ртути, что вызывает беспокойство о воздействии этого тяжелого металла. Количество ртути в стандартной дозе вакцины, содержащей тимеросал, примерно такое же, как и в банке тунца весом 85 граммов.

Желатин является стабилизатором, используемым в некоторых вакцинах для защиты активного ингредиента. Его получают от свиней и сильно обрабатывают. Другие стабилизаторы включают подсластитель сорбит, сахарозу и лактозу.

Полисорбат 80 является эмульгатором, используемым в пищевой промышленности в мороженом, желатиновых десертах, соусе барбекю и маринованных продуктах. В вакцинах он помогает другим компонентам оставаться растворимыми. Некоторые люди выразили озабоченность по поводу безопасности полисорбата 80 после того, как исследования показали потенциальную связь с репродуктивными проблемами у самок крыс и преждевременной недостаточностью яичников у девочек, получающих вакцину против вируса папилломы человека. Однако другие ученые не обнаружили никаких побочных эффектов, когда полисорбат 80 был включен в пневмококковую вакцину. Группа экспертов классифицировала воздействие полисорбата на вакцины как «очень низкое», ниже порогового значения, при котором он может вызывать токсичность.

Производители вакцин нуждаются в достаточном количестве бактерий и вирусов для получения необходимых доз. Бактерии или вирусы часто выращиваются в больших количествах до прохождения очистки, а затем ослабления или инактивации в процессе производства. Хотя большинство материалов, используемых на этой стадии, будут присутствовать или отсутствовать в конечном продукте, они могут фигурировать в списке ингредиентов.

Антибиотики используются в производстве вакцин против некоторых вирусов для предотвращения бактериального заражения. Наиболее часто используемые антибиотики-неомицин, стрептомицин, полимиксин в, гентамицин и канамицин.

Регуляторы кислотности, такие как янтарная кислота и динатриевый адипат, помогают поддерживать рН на правильном уровне во время процесса расширения. Бычья сыворотка является компонентом некоторых составов питательных сред.

Овальбумин — это белок в белках куриных яиц. Вирусные частицы, используемые в некоторых вакцинах против гриппа и бешенства, выращиваются на куриных яйцах, что делает возможным появление в конечном продукте небольших следов овальбумина.

Глутаровый альдегид и формальдегид — это химические вещества, используемые для инактивации токсинов от вирусов и бактерий в некоторых вакцинах. Эти химические вещества токсичны в больших количествах. Согласно проекту изучения вакцин Оксфордского университета в Соединенном Королевстве, «груша содержит в 50 раз больше формальдегида, чем содержится в любой вакцине».

Содержат ли вакцины клеточный материал человека?

Некоторые вакцины изготавливаются из вирусов или патогенных молекул, которые экспрессируются в клетках человека, животных или дрожжей. Существуют две линии человеческих клеток, которые используют фармацевтические компании. Они называются WI-38 и MRC-5. Обе эти клеточные линии были созданы из клеток, взятых из легких абортированных плодов. После экспансии вирусы собирают из этих клеточных линий и очищают. Вероятность присутствия в вакцине любого клеточного материала человека очень мала. Для некоторых людей тот факт, что клетки из абортированных плодов используются таким образом, представляет моральную проблему.

Другие вирусы выращиваются в клетках животных до их включения в вакцины. Животные клетки, используемые для этой цели, включают клетки почек африканских зеленых обезьян (клетки Vero) и клетки куриного эмбриона.

Некоторые рекомбинантные вакцины могут содержать небольшие следовые количества дрожжевых белков или ДНК дрожжей.

Вспомогательные вещества в фармацевтике

В то время как некоторые люди будут удивлены, увидев вспомогательные вещества в вакцинах, эти соединения на самом деле имеют большое значение во всех лекарственных средствах. Сахара и ароматизаторы в сиропах маскируют потенциально неприятный вкус препарата, в то время как цвета помогают людям отличать один препарат от другого. Некоторые вспомогательные вещества помогают препарату проникать в кожу или определять, где в желудочно-кишечном тракте происходит его распад. Как и в случае с вакцинами, их цель-обеспечить безопасность и эффективность лекарственных средств.

По оценкам ВОЗ, вакцинация ежегодно предотвращает от 2 до 3 миллионов случаев смерти во всем мире. Тяжелые побочные эффекты очень редки, что делает вакцины одним из самых безопасных медицинских вмешательств в истории современной медицины.

Научная статья по теме: Разрабатывается вакцина против воспалительных заболеваний кишечника.

Источник

Читайте также:  Прививка от клещевого энцефалита и грудное вскармливание